Parasitology Research

, Volume 114, Issue 2, pp 795–799 | Cite as

Factors affecting sporoplasm release in Kudoa septempunctata

  • Sang Phil Shin
  • Kosuke Zenke
  • Hiroshi Yokoyama
  • Tomoyoshi Yoshinaga
Short Communication

Abstract

The myxosporean parasite Kudoa septempunctata has been isolated from cultured olive flounder (Paralichthys olivaceus) and was recently identified as a cause of food poisoning in humans. Since the sporoplasm plays an important role in causing diarrhea by invading intestinal cells, the specific factors affecting the release of sporoplasm from spores should be determined. Thus, we investigated the effect of digestive and serum enzymes, fetal bovine serum (FBS), temperature, and the role of glucose in cell culture media on the release of sporoplasm. Sporoplasm release was observed in the groups treated with FBS and media containing glucose. In addition, 1,10-phenanthroline inhibited the release of sporoplasm in the FBS medium. These results indicate that K. septempunctata uses glucose for releasing its sporoplasm and that zinc or metalloprotease is related to the release mechanism. The present study provides important information for the development of agents to prevent sporoplasm release and the consequent food poisoning caused by K. septempunctata.

Keywords

Kudoa septempunctata Sporoplasm release Food-borne illness Glucose 

References

  1. Adams JB (1991) Review: enzyme inactivation during heat processing of food-stuffs. Int J Food Sci Technol 26:1–20. doi:10.1111/j.1365-2621.1991.tb01136.x CrossRefGoogle Scholar
  2. Alama-Bermejo G, Bron JE, Raga JA, Holzer AS (2012) 3D Morphology, ultrastructure and development of Ceratomyxa puntazzi stages: first insights into the mechanisms of motility and budding in the Myxozoa. PLoS One 7:e32679. doi:10.1371/journal.pone.0032679 PubMedCentralPubMedCrossRefGoogle Scholar
  3. AlKurashi M, Eastick FA, Kuchipudi SV, Rauch C, Madouasse A, Zhu XQ, Elsheikha HM (2011) Influence of culture medium pH on internalization, growth and phenotypic plasticity of Neospora caninum. Vet Parasitol 177:267–274. doi:10.1016/j.vetpar.2010.11.053 PubMedCrossRefGoogle Scholar
  4. Casas SM, La Peyre JF, Reece KS, Azevedo C, Villalba A (2002) Continuous in vitro culture of the carpet shell clam Tapes decussatus protozoan parasite Perkinsus atlanticus. Dis Aquat Org 52:217–231. doi:10.3354/dao052217 PubMedCrossRefGoogle Scholar
  5. Chase JC, Dawson-Coates JA, Haddow JD, Stewart MH, Haines LR, Whitaker DJ, Ken ML, Olafson RW, Pearson TW (2001) Analysis of Kudoa thyrsites (Myxozoa: Myxosporea) spore antigens using monoclonal antibodies. Dis Aquat Org 45:121–129. doi:10.3354/dao045121 PubMedCrossRefGoogle Scholar
  6. Daniel RM, Dines M, Petach HH (1996) The denaturation and degradation of stable enzymes at high temperatures. Biochem J 317(Pt 1):1–11PubMedCentralPubMedGoogle Scholar
  7. Faff L, Nolte C (2000) Extracellular acidification decreases the basal motility of cultured mouse microglia via the rearrangement of the actin cytoskeleton. Brain Res 853:22–31PubMedCrossRefGoogle Scholar
  8. Ferruzza S, Rossi C, Sambuy Y, Scarino ML (2013) Serum-reduced and serum-free media for differentiation of Caco-2 cells. ALTEX-Altern Anim Exp 30:159–168Google Scholar
  9. Hall A (1998) Rho GTPases Actin Cytoskeleton Sci 279:509–514. doi:10.1126/science.279.5350.509 Google Scholar
  10. Harada T, Kawai T, Sato H, Yokoyama H, Kumeda Y (2012) Development of a quantitative polymerase chain reaction assay for detection of Kudoa septempunctata in olive flounder (Paralichthys olivaceus). Int J Food Microbiol 156:161–167. doi:10.1016/j.ijfoodmicro.2012.03.018 PubMedCrossRefGoogle Scholar
  11. Jeon CH, Wi S, Song JY, Choi HS, Kim JH (2014) Development of loop-mediated isothermal amplification method for detection of Kudoa septempunctata (Myxozoa: Multivalvulida) in olive flounder (Paralichthys olivaceus). Parasitol Res 113:1759–1767. doi:10.1007/s00436-014-3821-0 PubMedCrossRefGoogle Scholar
  12. Kalwat MA, Thurmond DC (2013) Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet beta cells. Exp Mol Med 45:e37. doi:10.1038/emm.2013.73 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kawai T, Sekizuka T, Yahata Y, Kuroda M, Kumeda Y, Iijima Y, Kamata Y, Sugita-Konishi Y, Ohnishi T (2012) Identification of Kudoa septempunctata as the causative agent of novel food poisoning outbreaks in Japan by consumption of Paralichthys olivaceus in raw fish. Clin Infect Dis 54:1046–1052. doi:10.1093/cid/cir1040 PubMedCrossRefGoogle Scholar
  14. Krishnamurti C, Saryan LA, Petering DH (1980) Effects of ethylenediaminetetraacetic acid and 1,10-phenanthroline on cell proliferation and DNA synthesis of Ehrlich ascites cells. Cancer Res 40:4092–4099PubMedGoogle Scholar
  15. Lin RS (1998) Zinc is essential for binding of p56lck to CD4 and CD8alpha. J Biol Chem 273:32878–32882. doi:10.1074/jbc.273.49.32878 PubMedCrossRefGoogle Scholar
  16. Lom J, Dykova I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol (Praha) 53:1–6CrossRefGoogle Scholar
  17. Martinez de Velasco G, Rodero M, Cuellar C, Chivato T, Mateos JM, Laguna R (2008) Skin prick test of Kudoa sp. antigens in patients with gastrointestinal and/or allergic symptoms related to fish ingestion. Parasitol Res 103:713–715. doi:10.1007/s00436-008-1017-1 PubMedCrossRefGoogle Scholar
  18. Matsukane Y, Sato H, Tanaka S, Kamata Y, Sugita-Konishi Y (2010) Kudoa septempunctata n. sp. (Myxosporea: Multivalvulida) from an aquacultured olive flounder (Paralichthys olivaceus) imported from Korea. Parasitol Res 107:865–872. doi:10.1007/s00436-010-1941-8 PubMedCrossRefGoogle Scholar
  19. Moran JDW, Whitaker DJ, Kent ML (1999) A review of the myxosporean genus Kudoa Meglitsch, 1947, and its impact on the international aquaculture industry and commercial fisheries. Aquaculture 172:163–196. doi:10.1016/S0044-8486(98)00437-2 CrossRefGoogle Scholar
  20. Ohnishi T, Kikuchi Y, Furusawa H, Kamata Y, Sugita-Konishi Y (2013) Kudoa septempunctata invasion increases the permeability of human intestinal epithelial monolayer. Foodborne Pathog Dis 10:137–142. doi:10.1089/fpd.2012.1294 PubMedCrossRefGoogle Scholar
  21. Okano S, Hurley DJ, Vandenplas ML, Moore JN (2006) Effect of fetal bovine serum and heat-inactivated fetal bovine serum on microbial cell wall-induced expression of procoagulant activity by equine and canine mononuclear cells in vitro. Am J Vet Res 67:1020–1024. doi:10.2460/ajvr.67.6.1020 PubMedCrossRefGoogle Scholar
  22. Song J-Y, Choi J-H, Choi H-S, Jung SH, Park MA (2013) Monitoring of Kudoa septempunctata in cultured olive flounder and wild fish in Jeju Island during 2012. J Fish Pathol 26:129–137. doi:10.7847/jfp.2013.26.3.129 CrossRefGoogle Scholar
  23. Tielens AG, van Grinsven KW, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasit 40:387–397. doi:10.1016/j.ijpara.2009.12.006 CrossRefGoogle Scholar
  24. Wilber CG (1948) Glucose content of the body fluid in marine annelids. J Biol Chem 173:141–143PubMedGoogle Scholar
  25. Zhang S, Kingsley RA, Santos RL, Andrews-Polymenis H, Raffatellu M, Figueiredo J, Nunes J, Tsolis RM, Adams LG, Baumler AJ (2003) Molecular pathogenesis of Salmonella enterica serotype typhimurium-induced diarrhea. Infect Immun 71:1–12. doi:10.1128/iai. 71.1.1-12.2003 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sang Phil Shin
    • 1
    • 2
  • Kosuke Zenke
    • 1
  • Hiroshi Yokoyama
    • 1
  • Tomoyoshi Yoshinaga
    • 1
  1. 1.Department of Aquatic Bioscience, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.Fisheries LaboratoryKinki UniversityWakayamaJapan

Personalised recommendations