Advertisement

Parasitology Research

, Volume 114, Issue 3, pp 1051–1061 | Cite as

Modeling of the putative distribution of the arbovirus vector Ochlerotatus japonicus japonicus (Diptera: Culicidae) in Germany

  • Christian Melaun
  • Antje Werblow
  • Sarah Cunze
  • Sina Zotzmann
  • Lisa K. Koch
  • Heinz Mehlhorn
  • Dorian D. Dörge
  • Katrin Huber
  • Oliver Tackenberg
  • Sven KlimpelEmail author
Original Paper

Abstract

Today, international travel and global freight transportation are increasing and have a direct influence on the introduction and establishment of non-native mosquito species as well as on the spread of arthropod (mosquito)-borne diseases inside Europe. One of the mosquito species that has become invasive in many areas is the Asian rock pool or bush mosquito Ochlerotatus japonicus japonicus (synonyms: Aedes japonicus japonicus or Hulecoeteomyia japonica japonica). This species was detected in Germany in 2008 for the first time. Until today, three different Oc. j. japonicus populations have been documented. Laboratory studies have shown that Oc. j. japonicus can act as a vector for a variety of disease agents. Thus, the knowledge on its current distribution is essential for different measurements. In the present study, ecological niche models were used to estimate the potential distribution of Oc. j. japonicus in Germany. The aim was to detect areas within Germany that could potentially function as habitats for this species. According to our model, areas in western, southern, and central Germany offer suitable conditions for the mosquito and may therefore be at risk for an invasion of the species. We strongly suggest that those areas should be monitored more intensively in the future. For this purpose, it would also be essential to search for possible dispersal routes as well as for natural barriers.

Keywords

Ochlerotatus japonicus japonicus Germany Vector Modeling 

Notes

Acknowledgments

This research was funded by the ERA-Net BiodivERsA, with the national funders German Research Foundation (DFG KL 2087/6-1), Austrian Science Fund (FWF I-1437), and The French National Research Agency (ANR-13-EBID-0007-01), part of the 2013 BiodivERsA call for research proposals, by the research funding program “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts, and by the Senate Competition Committee grant (SAW-2014-SGN-3, SAW-2011-BNI-3) of the Leibniz Association.

References

  1. Andreadis TG, Anderson JF, Munstermann LE, Wolfe RJ, Florin DA (2001) Discovery, distribution, and abundance of the newly introduced mosquito Ochlerotatus japonicus (Diptera: Culicidae) in Connecticut, USA. J Med Entomol 38:774–779CrossRefPubMedGoogle Scholar
  2. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, McMillen L, Unnasch TR (2004) Host feeding patterns of established and potential mosquito vectors of West Nile virus in the Eastern United States. Vector Borne Zoonotic Dis 4:71–82CrossRefPubMedCentralPubMedGoogle Scholar
  3. Becker N, Huber K, Pluskota B, Kaiser A (2011) Ochlerotatus japonicus japonicus—a newly established neozoan in Germany and a revised list of the German mosquito fauna. Eur Mosq Bull 29:88–102Google Scholar
  4. Bevins SN (2007) Establishment and abundance of a recently introduced mosquito species Ochlerotatus japonicus (Diptera: Culicidae) in the southern Appalachians, USA. J Med Entomol 44:945–52CrossRefPubMedGoogle Scholar
  5. Buehler R (2010) Transport policies, automobile use, and sustainable transport: a comparison of Germany and the United States. J Plan Educ Res 30:76–93CrossRefGoogle Scholar
  6. Burger JF, Davis H (2008) Discovery of Ochlerotatus japonicus japonicus (Theobald) (Diptera: Culicidae) in southern New Hampshire, USA and its subsequent increase in abundance in used tire casings. Entomol News 119:439–44CrossRefGoogle Scholar
  7. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. doi: 10.1146/annurev.ecolsys.110308.120159 CrossRefGoogle Scholar
  8. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMCM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  9. Gillson L, Dawson TP, Jack S, McGeoch MA (2013) Accommodating climate change contingencies in conservation strategy. Trends Ecol Evol 28:135–142. doi: 10.1016/j.tree.2012.10.008 CrossRefPubMedGoogle Scholar
  10. Gray EW, Harrison BA, Womack ML, Kerce J, Neely CJ, Noblet R (2005) Ochlerotatus japonicus japonicus (Theobald) in Georgia and North Carolina. J Am Mosq Control Assoc 21:144–46CrossRefPubMedGoogle Scholar
  11. Grim DC, Jackson BT, Paulson SL (2007) Abundance and bionomics of Ochlerotatus j. japonicus in two counties in southwestern Virginia. J Am Mosq Control Assoc 23:259–63CrossRefPubMedGoogle Scholar
  12. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  13. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  14. Gutsevich AV, Monchadskii S, Shtakel’berg AA (1974) Fauna SSSR, Diptera Vol. II, No. 4 Family Culicidae. Leningrad Akad Nauka SSSR Zool Inst N S No. 100, English translation: Israel Program for Scientific Translations, pp 384Google Scholar
  15. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol 12:2272–2281. doi: 10.1111/j.1365-2486.2006.01256.x CrossRefGoogle Scholar
  16. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  17. Huber K, Pluskota B, Jöst A, Hoffmann K, Becker N (2012) Status of the invasive species Aedes japonicus japonicus (Diptera: Culicidae) in southwest Germany in 2011. J Vector Ecol 37:462–465CrossRefPubMedGoogle Scholar
  18. Huber K, Schuldt K, Rudolf M, Marklewitz M, Fonseca DM, Kaufmann C, Tsuda Y, Junglen S, Krüger A, Becker N, Tannich E, Becker SC (2014) Distribution and genetic structure of Aedes japonicus japonicus populations (Diptera: Culicidae) in Germany. Parasitol Res 113:3201–3210. doi: 10.1007/s00436-014-4000-z CrossRefPubMedGoogle Scholar
  19. Ibaňez-Justicia A, Kampen H, Braks M, Schaffner F, Steeghs M, Werner D, Zielke D, Hartog W, Brooks M, Dik M, van de Vossenberg B, Scholte E-J (2014) First report of established population of Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) in the Netherlands. J Eur Mosq Contr Assoc 32:9–13 Google Scholar
  20. Ivanova NV, de Waard J, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high quality DNA. Mol Ecol Notes 6:998–1002. doi: 10.1111/j.1471-8286.2006.01428.x
  21. Juliano SA, Lounibos LP, O’Meara GF (2004) A field test for competitive effects of Aedes albopictus on Aedes aegypti in south Florida: differences between sites of coexistence and exclusion? Oecologia 139:583–593CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kampen H, Werner D (2014) Out of the bush: the Asian bush Mosquito Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) becomes invasive. Parasit Vectors 7:59CrossRefPubMedCentralPubMedGoogle Scholar
  23. Kampen H, Zielke D, Werner D (2012) A new focus of Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) distribution in Western Germany: rapid spread or a further introduction event? Parasit Vectors 5:284. doi: 10.1186/1756-3305-5-284 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kaufman MG, Fonseca DM (2014) Invasion Biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu Rev Entomol 59:31–49CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98Google Scholar
  26. Kumar NP, Rajavel AR, Natarajan R, Jambulingam P (2007) DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med Entomol 44:1–7CrossRefPubMedGoogle Scholar
  27. Laird M, Calder L, Thornton RC, Syme R, Holder PW, Mogi M (1994) Japanese Aedes albopictus among four mosquito species reaching New Zealand in used tires. J Am Mosq Control Assoc 10:14–23PubMedGoogle Scholar
  28. Lobo JM, Jiménez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114. doi: 10.1111/j.1600-0587.2009.06039.x CrossRefGoogle Scholar
  29. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  30. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x CrossRefGoogle Scholar
  31. Pearson RG (2010) Species’ distribution modeling for conservation educators and practitioners. Lessons in Conservation 3:54–89Google Scholar
  32. Peyton EL, Campbell SR, Candeletti TM, Romanowski M, Crans WJ (1999) Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Contr Assoc 15:238–241Google Scholar
  33. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
  34. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning, 655–662Google Scholar
  35. Reiss H, Cunze S, Koenig K, Neumann H, Kroencke I (2011) Species distribution modelling of marine benthos: a North Sea case study. Mar Ecol Prog Ser 442:71–86CrossRefGoogle Scholar
  36. Sardelis MR, Dohm DJ, Pagac B, Andre RG, Turell MJ (2002a) Experimental transmission of eastern equine encephalitis virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol 39:480–484CrossRefPubMedGoogle Scholar
  37. Sardelis MR, Turell MJ, Andre RG (2002b) Laboratory transmission of La Crosse virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol 39:635–639CrossRefPubMedGoogle Scholar
  38. Sardelis MR, Turell MJ, Andre RG (2003) Experimental transmission of St. Louis encephalitis virus by Ochlerotatus j. japonicus. J Am Mosq Control Assoc 19:159–162PubMedGoogle Scholar
  39. Savignac R, Back C, Bourassa J (2002) Biological notes on Ochlerotatus japonicus & other mosquito species new to Quebec [abstract]. In The abstract book of a joint meeting: 68th Annual Meeting of the American Mosquito Control Association and the West Central Mosquito & Vector Control Association. Eatontown, NJ, American Mosquito Control Association. 21–22Google Scholar
  40. Schaffner FL, Chouin S, Guilloteau J (2003) First record of Ochlerotatus (Finlaya) japonicus japonicus (Theobald, 1901) in metropolitan France. J Am Mosq Control Assoc 19:1–5PubMedGoogle Scholar
  41. Schaffner F, Kaufman C, Hegglin D, Mathis A (2009) The invasive mosquito Aedes japonicus in Central Europe. Med Vet Entomol 23:448–451CrossRefPubMedGoogle Scholar
  42. Schaffner F, Kaufmann C, Failloux AB, Mathis A (2011) Vector competence of Aedes japonicus for chikungunya and dengue viruses. Eur Mosq Bull 29:141–142Google Scholar
  43. Schneider K (2011) Breeding of Ochlerotatus japonicus japonicus (Diptera: Culicidae) 80 km north of its known range in southern Germany. Eur Mosq Bull 29:129–132Google Scholar
  44. Seidel B, Duh D, Nowotny N, Allerberger F (2012) Erstnachweis der Stechmücken Aedes (Ochlerotatus) japonicus japonicus (Theobald, 1901) in Österreich und Slowenien in 2011 und für Aedes (Stegomyia) albopictus (Skuse, 1895) in Österreich 2012 (Diptera: Culicidae). Entomol Zeitschrift 5:223–226Google Scholar
  45. Stabach JA, Laporte N, Olupot W (2009) Modeling habitat suitability for Grey Crowned-cranes (Balearica regulorum gibbericeps) throughout Uganda. Int J Biodivers Conserv 1:177–186Google Scholar
  46. Takashima I, Rosen L (1989) Horizontal and vertical transmission of Japanese encephalitis virus by Aedes japonicus (Diptera: Culicidae). J Med Entomol 26:454–458CrossRefPubMedGoogle Scholar
  47. Tanaka K, Mizusawa K, Saugstad ES (1979) A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara islands) and Korea (Diptera: Culicidae). Contrib of the Am Entomol Inst 16:1–987Google Scholar
  48. Thielman A, Hunter FF (2006) Establishment of Ochlerotatus japonicus (Diptera: Culicidae) in Ontario, Canada. J Med Entomol 43:138–42CrossRefPubMedGoogle Scholar
  49. Trisurat Y, Alkemade R, Arets E (2009) Projecting forest tree distributions and adaptation to climate change in northern Thailand. J Ecol Nat Environ 1:55–63Google Scholar
  50. Turell MJ, O'Guinn ML, Dohm DJ, Jones JW (2001) Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38:130–134CrossRefPubMedGoogle Scholar
  51. Turell MJ, Dohm DJ, Sardelis MR, O’Guinn ML, Andreadis TG, Blow JA (2005) An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. J Med Entomol 42:57–62CrossRefPubMedGoogle Scholar
  52. Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83. doi: 10.1111/j.1472-4642.2011.00854.x CrossRefGoogle Scholar
  53. Versteirt V, Schaffner F, Garros C, Dekoninck W, Coosemans M, Van Bortel W (2009) Introduction and stablishment of the exotic mosquito species Aedes japonicus japonicus (Diptera: Culicidae) in Belgium. J Med Entomol 46:1464–1467CrossRefPubMedGoogle Scholar
  54. Werblow A, Bolius S, Dorresteijn AWC, Melaun C, Klimpel S (2013) Diversity of Culex torrentium Martini, 1925—a potential vector of arboviruses and filarial in Europe. Parasitol Res 112:2495–2501CrossRefPubMedGoogle Scholar
  55. Werner D, Kampen H (2013) The further spread of Aedes japonicus japonicus (Diptera, Culicidae) towards northern Germany. Parasitol Res 112:3665–3668CrossRefPubMedGoogle Scholar
  56. Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Colloquium papers: niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci U S A 106(2):19729–19736. doi: 10.1073/pnas.0901639106 CrossRefPubMedCentralPubMedGoogle Scholar
  57. Zielke DE, Werner D, Schaffner F, Kampen H, Fonseca DM (2014) Unexpected patterns of admixture in German populations of Aedes japonicus japonicus (Diptera: Culicidae) underscore the importance of human intervention. PLoS One. doi: 10.1371/journal.pone.0099093

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Melaun
    • 1
  • Antje Werblow
    • 1
  • Sarah Cunze
    • 2
  • Sina Zotzmann
    • 1
  • Lisa K. Koch
    • 1
  • Heinz Mehlhorn
    • 3
  • Dorian D. Dörge
    • 1
  • Katrin Huber
    • 4
  • Oliver Tackenberg
    • 2
  • Sven Klimpel
    • 1
    Email author
  1. 1.Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für NaturforschungGoethe-UniversityFrankfurt/ M.Germany
  2. 2.Institute for Ecology, Evolution and Diversity; Department Ecology and GeobotanyGoethe-UniversityFrankfurt/ M.Germany
  3. 3.Institute for ParasitologyHeinrich Heine UniversityDüsseldorfGermany
  4. 4.Bernhard Nocht Institute for Tropical MedicineHamburgGermany

Personalised recommendations