Parasitology Research

, Volume 114, Issue 3, pp 1011–1021 | Cite as

Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies

  • Giovanni BenelliEmail author
  • Stefano Bedini
  • Guido Flamini
  • Francesca Cosci
  • Pier Luigi Cioni
  • Smain Amira
  • Fatima Benchikh
  • Hocine Laouer
  • Graziano Di Giuseppe
  • Barbara ContiEmail author
Original Paper


Mosquitoes (Diptera: Culicidae) represent a threat for millions of people worldwide, since they act as vectors for important pathogens, including malaria, yellow fever, dengue and West Nile. Second to malaria as the world’s most widespread parasitic disease, infection by trematodes is a devastating public health problem. In this study, we proposed two essential oils from plants cultivated in Mediterranean regions as effective chemicals against mosquitoes and freshwater snails vectors of Echinostoma trematodes. Chemical composition of essential oils from Achillea millefolium (Asteraceae) and Haplophyllum tuberculatum (Rutaceae) was investigated. Acute toxicity was evaluated against larvae of the West Nile vector Culex pipiens (Diptera: Culicidae) and the invasive freshwater snail Physella acuta (Mollusca: Physidae), an important intermediate host of many parasites, including Echinostoma revolutum (Echinostomidae). Acute toxicity of essential oils was assessed also on a non-target aquatic organism, the mayfly Cloeon dipterum (Ephemeroptera: Baetidae). Achillea millefolium and H. tuberculatum essentials oils were mainly composed by oxygenated monoterpenes (59.3 and 71.0 % of the whole oil, respectively). Chrysanthenone and borneol were the two major constituents of Achillea millefolium essential oil (24.1 and 14.2 %, respectively). Major compounds of H. tuberculatum essential oil were cis-p-menth-2-en-1-ol and trans-p-menth-2-en-1-ol (22.9 and 16.1 %, respectively). In acute toxicity assays, C. pipiens LC50 was 154.190 and 175.268 ppm for Achillea millefolium and H. tuberculatum, respectively. P. acuta LC50 was 112.911 and 73.695 ppm for Achillea millefolium and H. tuberculatum, respectively, while the same values were 198.116 and 280.265 ppm for C. dipterum. Relative median potency analysis showed that both tested essential oils were more toxic to P. acuta over C. dipterum. This research adds knowledge on plant-borne chemicals toxic against invertebrates of medical importance, allowing us to propose the tested oils as effective candidates to develop newer and safer vector control tools.


Achillea millefolium Haplophyllum tuberculatum GC-MS analysis Mosquito-borne diseases Echinostomiasis Trematoda Non-target aquatic organisms 



We thank Heinz Mehlhorn and the anonymous reviewers for their comments on an earlier version of the manuscript. We are grateful to Alfio Raspi for specific identification of C. pipiens and C. dipterum. Paolo Giannotti and Riccardo Antonelli kindly provided the artworks. Giovanni Benelli is supported by an MIS 124 MODOLIVI Grant. Funds were also provided by the Italian Ministry of Education, University and Research (MIUR). Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no competing interests.

Authors’ contributions

GB and BC conceived and designed the experiments. GB, GF, SB, FC, PLC, GDG and BC performed the experiments. GB, SB, GF and GDG analysed the data. GB, GF, SB, SA, FB, HL, GDG and BC contributed reagents/materials/analysis tools. GB wrote the paper.


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Adams RP (1995) Identification of essential oil components by gas chromatography-mass spectroscopy. Allured, Carol StreamGoogle Scholar
  3. Al-Burtamani SKS, Fatope MO, Marwah RG, Onifade AK, Al-Saidi SH (2005) Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman. J Ethnopharmacol 96:107–112CrossRefPubMedGoogle Scholar
  4. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefPubMedGoogle Scholar
  5. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefPubMedGoogle Scholar
  6. Andrews P, Thyssen J, Lorke D (1982) The biology and toxicology of molluscicides, Bayluscide. Pharmacol Ther 19:245–295CrossRefPubMedGoogle Scholar
  7. Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326CrossRefPubMedGoogle Scholar
  8. Barragán-Sáenz FA, Sánchez-Nava P, Hernández-Gallegos O, Salgado-Maldonado G (2009) Larval stages of trematodes in gastropods from Lake Chicnahuapan, State of Mexico, Mexico. Parasitol Res 105:1163–1167CrossRefPubMedGoogle Scholar
  9. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85CrossRefGoogle Scholar
  10. Benelli G (2015) The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-014-4252-7
  11. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161CrossRefPubMedGoogle Scholar
  12. Benelli G, Canale A, Conti B (2014a) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacol Online 1:44–51Google Scholar
  13. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2014b) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res. doi: 10.1007/s00436-014-4183-3 Google Scholar
  14. Benelli G, Conti B, Garreffa R, Nicoletti M (2014c) Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113:933–940CrossRefPubMedGoogle Scholar
  15. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res. doi: 10.1007/s00436-014-4286-x
  16. Bernot RJ, Kennedy EE, Lamberti GA (2005) Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem 24:1759–1765CrossRefPubMedGoogle Scholar
  17. Brackenbury TD (1999) The molluscicidal properties of Apodytes dimidiata (Icacinaceae): geographical variation in molluscicidal potency. Ann Trop Med Hyg 93:511–518CrossRefGoogle Scholar
  18. Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717CrossRefPubMedCentralPubMedGoogle Scholar
  19. Chifundera K, Baluku B, Mashimango B (1993) Phytochemical screening and molluscicidal potency of some Zairean medicinal plants. Pharmacol Res 28:333–340CrossRefPubMedGoogle Scholar
  20. Chitsulo L, Engels D, Montresor A, Savioli L (2000) The global status of schistosomiasis and its control. Acta Trop 77:41–51CrossRefPubMedGoogle Scholar
  21. Clark TE, Appleton CC, Drewes SE (1997) A semi- quantitative approach to the selection of appropriate candidate plant molluscicides - a South African application. J Ethnopharmacol 56:1–13CrossRefPubMedGoogle Scholar
  22. Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1462CrossRefPubMedGoogle Scholar
  23. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012a) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021CrossRefPubMedGoogle Scholar
  24. Conti B, Benelli G, Leonardi M, Afifi UF, Cervelli C, Profeti R, Pistelli L, Canale A (2012b) Repellent effect of Salvia dorisiana, S. longifolia and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 111:291–299CrossRefPubMedGoogle Scholar
  25. Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G (2013) Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res 112:991–999CrossRefPubMedGoogle Scholar
  26. Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G (2014) Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res 113:251–259CrossRefPubMedGoogle Scholar
  27. da Silva CLPAC, Vargas TS, Baptista DF (2013) Molluschicidal activity of Moringa oleifera on Biomphalaria glabrata: integrated dynamics to the control of the snail host of Schistosoma mansoni. Rev Bras Farmacogn 23:848–850CrossRefGoogle Scholar
  28. Davies NW (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and carbowax 20M phases. J Chromatogr 503:1–24CrossRefGoogle Scholar
  29. Evergetis E, Michaelakis A, Kioulos E, Koliopoulos G, Haroutounian SA (2009) Chemical composition and larvicidal activity of essential oils from six Apiaceae family taxa against the West Nile virus vector Culex pipiens. Parasitol Res 105:117–124CrossRefPubMedGoogle Scholar
  30. Faltýnková A (2005) Larval trematodes (Digenea) in molluscs from small water bodies near Šeské Budšjovice, Czech Republic. Acta Parasitol 52:49–55Google Scholar
  31. Faltýnková A, Haas W (2006) Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): before and today. Parasitol Res 99:572–582CrossRefPubMedGoogle Scholar
  32. Fokin SI, Di Giuseppe G, Erra F, Dini F (2008) Euplotespora binucleata n. gen., n. sp. (Protozoa: Microsporidia), a parasite infecting the hypotrichous ciliate Euplotes woodruffi, with observations on microsporidian infections in Ciliophora. J Eukaryot Microbiol 55:214–228CrossRefPubMedGoogle Scholar
  33. Folmer O, Hoeh WR, Black MB, Vrijenhoek RL (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  34. Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123CrossRefPubMedGoogle Scholar
  35. Gleiser RM, Bonino MA, Zygadlo JA (2011) Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol Res 108:69–78CrossRefPubMedGoogle Scholar
  36. Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620CrossRefPubMedGoogle Scholar
  37. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367CrossRefPubMedGoogle Scholar
  38. Grandi M (1960) Ephemeroidea. Fauna d’Italia, vol. III. Calderini, BolognaGoogle Scholar
  39. Hai GY, Min WC, Jing J, Xuan HH (2009) Physa acuta found in Beijing, China. Chin J Zool 44:127–128Google Scholar
  40. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CrossRefPubMedGoogle Scholar
  41. Jaiswal P, Singh DK (2009) Mollusicidal activity of nutmeg and mace (Myristica fragrans Houtt.) against the vector snail Lymnaea acuminata. J Herbs Spices Med Plants 15:177–186CrossRefGoogle Scholar
  42. Jennings W, Shibamoto T (1980) Qualitative analysis of flavour and fragrance volatiles by glass capillary chromatography. Academic Press, New YorkGoogle Scholar
  43. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627CrossRefPubMedGoogle Scholar
  44. Keiser J, Utzinger J (2004) Chemotherapy for major food-borne trematodes: a review. Expert Opin Pharmacother 5:1711–1726CrossRefPubMedGoogle Scholar
  45. Kimbaris AC, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111:2403–2410CrossRefPubMedGoogle Scholar
  46. Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335CrossRefPubMedGoogle Scholar
  47. Kraus TJ, Brant SV, Adema CM (2014) Characterization of Trematode Cercariae from Physella acuta in the Middle Rio Grande. Comp Parasitol 81:105–109CrossRefGoogle Scholar
  48. Kumar P, Singh VK, Tripathi CPM, Singh DK (2010) Effects of molluscicidal constituents in spices on reproduction in snails. J Herbs Spices Med Plants 16:24–35CrossRefGoogle Scholar
  49. Lahlou M (2003) Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharm Biol 41:207–210CrossRefGoogle Scholar
  50. Lahlou M (2004) Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res 18:435–448CrossRefPubMedGoogle Scholar
  51. Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al (2014) Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop 132S:S2–S11CrossRefGoogle Scholar
  52. Maldonado A Jr, Vieira GO, Garcia JS, Rey L, Lanfredi RM (2001) Biological aspects of a new isolate of Echinostoma paraensei Trematoda: Echinostomatidae): susceptibility of sympatric snails and the natural vertebrate host. Parasitol Res 87:853–859CrossRefPubMedGoogle Scholar
  53. Marking LL, Rach JJ, Schreier TM (1994) Evaluation of antifungal agents for fish culture. Progr Fish-Cultur 56:225–231CrossRefGoogle Scholar
  54. Massada Y (1976) Analysis of essential oils by gas chromatography and mass spectrometry. Wiley, New YorkGoogle Scholar
  55. McCage CM, Ward SM, Paling CA, Fisher DA, Flynn PJ, McLaughlin JL (2002) Development of a paw paw herbal shampoo for the removal of head lice. Phytomedicine 9:743–748CrossRefPubMedGoogle Scholar
  56. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499CrossRefPubMedGoogle Scholar
  57. Mehlhorn H (2011) Parasites and their World records in their fight for survival. In: Mehlhorn H (ed) Progress in parasitology, parasitology research monographs vol. 2, Springer, pp 41–68Google Scholar
  58. Michaelakis A, Theotokatos SA, Koliopoulos G, Chorianopoulos NG (2008) Essential oils of Satureja species: insecticidal effect on Culex pipiens larvae (Diptera: Culicidae). Molecules 12:2567–2578CrossRefGoogle Scholar
  59. Michaelakis A, Strongilos AT, Bouzas EA, Koliopoulos G, Couladouros EA (2009a) Larvicidal activity of naturally occurring naphthoquinones and derivatives against the West Nile virus vector Culex pipiens. Parasitol Res 104:657–662CrossRefPubMedGoogle Scholar
  60. Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG (2009b) Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol Res 105:769–773CrossRefPubMedGoogle Scholar
  61. Mills C, Cleary BJ, Gilmer JF, Walsh JJ (2004) Inhibition of acetylcholinesterase by tea tree oil. J Pharm Pharmacol 56:375–379CrossRefPubMedGoogle Scholar
  62. Mohsen ZH, Jaffer HJ, Alsaadi AZS (1989) Insecticidal effects of Haplophyllum tuberculatum against Culex quinquefasciatus. Pharm Biol 27:17–21CrossRefGoogle Scholar
  63. Muñoz-Antoli C, Trelis M, Toledo R, Esteban JG (2006) Infectivity of Echinostoma friedi miracidia to different snail species under experimental conditions. J Helminthol 80:323–325PubMedGoogle Scholar
  64. Muñoz-Antoli C, Marin A, Vidal A, Toledo R, Esteban JG (2008) Euparyphium albuferensis and Echinostoma friedi (Trematoda: Echinostomatidae): experimental cercarial transmission success in sympatric snail communities. Folia Parasitol 52:122–126CrossRefGoogle Scholar
  65. Noudjou F, Kouninki H, Ngamo LST, Maponmestsem PM, Ngassoum M, Hance T, Haubruge E, Malaisse F, Marlier M, Lognay GC (2007) Effect of site location and collecting period on the chemical composition of Hyptis spicigera Lam. An insecticidal essential oil from North-Cameroon. J Essent Oil Res 19:597–601CrossRefGoogle Scholar
  66. Oliva CF, Damiens D, Benedict MQ (2014) Male reproductive biology of Aedes mosquitoes. Acta Trop 132S:S512–S519Google Scholar
  67. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microbes Infect 11:1177–1185CrossRefPubMedGoogle Scholar
  68. Pavela R (2009) Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind Crop Prod 30:311–315CrossRefGoogle Scholar
  69. Peng Z, Yang J, Wang H, Simons FER (1999) Production and characterisation of monoclonal antibodies to two new mosquito Aedes aegypti salivary protein. Insect Biochem Mol Biol 29:909–914CrossRefPubMedGoogle Scholar
  70. Pinto HA, de Melo AL (2012) Physa marmorata (Molusca: Phisidae) as intermediate host of Echinostoma exile (Trematoda: Echinostomatidae) in Brazil. Neotropical Helminthol 6:291–299Google Scholar
  71. Pinto HA, Sara V, Brant SV, de Melo AL (2014) Physa marmorata (Mollusca: Physidae) as a natural intermediate host of Trichobilharzia (Trematoda: Schistosomatidae), a potential causative agent of avian cercarial dermatitis in Brazil. Acta Trop 138:38–43CrossRefPubMedGoogle Scholar
  72. Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 23:208–212PubMedGoogle Scholar
  73. Radwan MA, El-Zemity SR, Mohamed SA, Sherby SM (2008) Potential of some monoterpenoids and their new N-methyl carbamate derivatives against Schistosomiasis snail vector, Biomphalaria alexandrina. Ecotoxicol Environ Saf 71:889–894CrossRefPubMedGoogle Scholar
  74. Rajkumar S, Jebanesan A (2005) Repellency of volatile oils from Moschosma polystachyum and Solanum xanthocarpum against filarial vector Culex quinquefasciatus Say. Trop Biomed 22:139–142PubMedGoogle Scholar
  75. Rapado LN, Nakano E, Ohlweiler FP, Kato MJ, Yamaguchi LF, Pereira CA, Kawano T (2011) Molluscicidal and ovicidal activities of plant extracts of the Piperaceae on Biomphalaria glabrata (Say, 1818). J Helminthol 85:66–72Google Scholar
  76. Salama MM, Taher EE, El-Bahy MM (2012) Molluscicidal and mosquitocidal activities of the essential oils of Thymus capitatus Hoff et Link. and Marrubium vulgare L. Rev Inst Med Trop Sao Paulo 54:281–286CrossRefPubMedGoogle Scholar
  77. Schall VT, Vasconcellos MC, Rocha RS, Souza CP, Mendes NM (2001) The control of the schistosome-transmitting snail Biomphalaria glabrata by the plant Molluscicide Euphorbia splendens var. hislopii (syn milli Des. Moul): a longitudinal field study in an endemic area in Brazil. Acta Trop 79:165–170CrossRefPubMedGoogle Scholar
  78. Seeland A, Albrand J, Oehlmann J, Müller R (2013) Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change. Environ Pollut 174:1–9CrossRefPubMedGoogle Scholar
  79. Severini C, Romi R, Marinucci M, Rajmond M (1993) Mechanism of insecticide resistance in field populations of Culex pipiens from Italy. J Am Mosq Control Assoc 9:164–168PubMedGoogle Scholar
  80. Singh A, Singh VK (2009) Molluscicidal activity of Saraca asoca and Thuja orientalis against the fresh water snail Lymnaea acuminata. Vet Parasitol 164:206–2010CrossRefPubMedGoogle Scholar
  81. Singh SK, Yadav RP, Tiwari S, Singh A (2005) Toxic effect of stem bark and leaf of Euphorbia hirta plant against freshwater vector snail Lymnaea acuminata. Chemosphere 59:263–270CrossRefPubMedGoogle Scholar
  82. Singh SK, Yadav RP, Singh A (2010) Molluscicides from some common medicinal plants of eastern Uttar Pradesh, India. J Appl Toxicol 30:1–7CrossRefPubMedGoogle Scholar
  83. Sohn W-M, Chai J-Y, Yong T-S, Eom KS, Yoon C-H, Sinuon M et al (2011) Echinostoma revolutum infection in children, Pursat Province, Cambodia. Emerg Infect Dis 17:117–119CrossRefPubMedCentralPubMedGoogle Scholar
  84. Stenhagen E, Abrahamson S, McLafferty FW (1974) Registry of mass spectral data. Wiley, New YorkGoogle Scholar
  85. Sun H, Sun L, He J, Shen B, Yu J, Chen C, Yang M, Sun Y, Zhang D, Ma L, Zhu C (2011) Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens. Parasitol Res 109:1689–1697CrossRefPubMedGoogle Scholar
  86. Swigar AA, Silverstein RM (1981) Monoterpenes. Aldrich Chem Comp, MilwaukeeGoogle Scholar
  87. Tchoumbougang F, Amvam Zollo PH, Fecam Boyom F, Nyegue MA, Bessière JM (2005) Aromatic plants of Tropical Central Africa. XLVIII. Comparative study of the essential oils of four Hyptis species from Cameroon: H. lanceolata Poit., H. pectinata (L.) Poit., H. spicigera Lam. and H. suaveolens Poit. Flavour Fragr J 20:340–343CrossRefGoogle Scholar
  88. Teixeira T, Rosa JS, Rainha N, Baptista J, Rodrigues A (2012) Assessment of molluscicidal activity of essential oils from five Azorean plants against Radix peregra (Muller, 1774). Chemosphere 87:1–6CrossRefPubMedGoogle Scholar
  89. Toledo R, Muñoz-Antolí C, Pérez M, Esteban JG (1999) Miracidial infectivity of Hypoderaeum conoideum (Trematoda: Echinostomatidae): differential susceptibility of two lymnaeid species. Parasitol Res 85:212–215CrossRefPubMedGoogle Scholar
  90. Toledo R, Muñoz-Antolí C, Esteban JG (2000) The life-cycle of Echinostoma friedi n. sp. (Trematoda: Echinostomatidae) in Spain and a discussion on the relationships within the ‘revolutum’ group based on cercarial chaetotaxy. Syst Parasitol 45:199–217CrossRefPubMedGoogle Scholar
  91. Wethington AR, Lydeard C (2007) A molecular phylogeny of physidae (gastropoda: basommatophora) based on mitochondrial DNA sequences. J Molluscan Stud 73:241–257CrossRefGoogle Scholar
  92. WHO (1981) Instruction for determining the susceptibility or resistance of mosquito larvae to insecticide. WHO/VBC/81.807.Control of Tropical Diseases. World Health Organization, GenevaGoogle Scholar
  93. WHO (2014) Foodborne trematodiases. Fact sheet N°368Google Scholar
  94. Yari M, Masoudi S, Rustaiyan A (2000) Essential oil of Haplophyllum tuberculatum (Forssk.) A. Juss. grown wild in Iran. J Essent Oil Res 12:69–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Giovanni Benelli
    • 1
    Email author
  • Stefano Bedini
    • 1
  • Guido Flamini
    • 2
  • Francesca Cosci
    • 1
  • Pier Luigi Cioni
    • 2
  • Smain Amira
    • 3
  • Fatima Benchikh
    • 3
  • Hocine Laouer
    • 4
  • Graziano Di Giuseppe
    • 5
  • Barbara Conti
    • 1
    Email author
  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  2. 2.Department of PharmacyUniversity of PisaPisaItaly
  3. 3.Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Animal Biology and Physiology, Faculty of Nature and Life SciencesUniversity Setif 1SetifAlgeria
  4. 4.Laboratory of Natural and Biological Resources Valorization, Faculty of Nature and Life SciencesUniversity Setif 1SetifAlgeria
  5. 5.Department of BiologyUniversity of PisaPisaItaly

Personalised recommendations