Parasitology Research

, Volume 114, Issue 3, pp 941–954 | Cite as

Variations in the excretion patterns of helminth eggs in two sympatric mouse lemur species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar

  • Ute RadespielEmail author
  • K. Schaber
  • S. E. Kessler
  • F. Schaarschmidt
  • C. Strube
Original Paper


Many factors can influence the parasite load of animal hosts, but integrative studies that simultaneously investigate several factors are still rare in many taxonomic groups. This study investigates the influence of host species, host population density, parasite transmission mode, sex, and two temporal (month, year) factors on gastrointestinal parasite prevalence and fecal egg counts of two endemic primate species from Madagascar, Microcebus ravelobensis and Microcebus murinus. A total of 646 fecal samples were available and analyzed from three dry seasons. Six different helminth egg morphotypes were found, and these were Subulura sp. (14.51 % prevalence), strongyle eggs (12.95 %), Ascaris sp. (7.94 %), Lemuricola sp. (0.17 %), and two forms of tapeworms (Hymenolepis spp.) (1.73 and 0.69 %). Coinfection with more than one egg type was observed in 21.22 % of the samples containing eggs. Multivariate analyses revealed that host species and sex did neither explain significant variation in the prevalence and fecal egg counts of parasites with direct life cycles (Ascaris sp., strongyle egg type, Lemuricola sp.) nor of arthropod-transmitted parasites (Subulura sp.). However, fecal egg counts of Subulura sp. differed significantly between study sites, and the prevalence of Subulura sp. and of parasites with direct life cycles was influenced by temporal parameters, mainly by differences between study years and partly between months. When comparing the findings with the yearly and seasonal rainfall patterns in the area, most results are in accordance with the hypothesis of an increased vulnerability of the host toward infection under some sort of environmental challenge.


Endoparasites Lemurs Nematodes Cestodes Seasonality Disease susceptibility 



We would like to thank the Malagasy government, Ministère De L’Environnement et des Forêts, and Madagascar National Parks (MNP) for their permission to work in the Ankarafantsika National Park and for their support during fieldwork. We are grateful to Solofonirina Rasoloharijaona, Blanchard Randrianambinina, and Romule Rakotondravony from the University of Mahajanga for continuous support during all stages of our work in Madagascar. We thank Sandra Thorén, Miriam Linnenbrink, Alida I.F. Hasiniaina, and Lisette Leliveld for collecting fecal samples, and Jhonny Kennedy and Jean de la Croix for guide services. The Durrell Wildlife Preservation Trust is acknowledged for providing the climate data of Ampijoroa. We furthermore thank Elke Zimmermann and the Institute of Zoology for long-term support and Sandra Buschbaum for technical support during fecal analyses.

Compliance with ethical standards

The authors declare that they have no conflict of interest with regard to this publication. The study was partly funded by the DFG (U.R., Ra 502/9) and by NSF Dissertation Improvement Grant (S.E.K., #0961779), PEO Scholar Award (S.E.K.), the Animal Behavior Society (S.E.K.), Lewis and Clark Fund of the American Philosophical Society (S.E.K.), American Society of Primatologists (S.E.K.), Sigma Xi (National Chapter, S.E.K., grant #G2009101504), Sigma Xi (Arizona State University chapter, S.E.K.), Arizona State University Graduate and Professional Student Association (S.E.K.), and the Arizona State University School of Human Evolution and Social Change (S.E.K.).

All field handling and sampling procedures accorded to the legal requirements of Madagascar and were approved by the Ministry of Water and Forests. All chosen approaches conform to the accepted principles of animal welfare in experimental science and the principles defined in the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes and its appendix were followed. Furthermore, the methods complied with international ethical standards for the treatment of primates and with the national laws and research rules formulated by the Malagasy authorities.


  1. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4, R package version 1.1-5 edn.
  2. Benavides JA et al (2012) From parasite encounter to infection: multiple-scale drivers of parasite richness in a wild social primate population. Am J Phys Anthropol 147:52–63CrossRefPubMedGoogle Scholar
  3. Chanu L, Goetze D, Rajeriarison C, Roger E, Thorén S, Porembski S, Radespiel U (2012) Can differences in floristic composition explain variation in the abundance of two sympatric mouse lemur species (Microcebus) in the Ankarafantsika National Park, northwestern Madagascar? Malag Nat 6:83–102Google Scholar
  4. Clough D, Heistermann M, Kappeler PM (2010) Host intrinsic determinants and potential consequences of parasite infection in free-ranging red-fronted lemurs (Eulemur fulvus rufus). Am J Phys Anthropol 142:441–452CrossRefPubMedGoogle Scholar
  5. Clough D, Kappeler PM, Walter L (2011) Genetic regulation of parasite infection: empirical evidence of the functional significance of an IL4 gene SNP on nematode infections in wild primates. Front Zool 8:9CrossRefPubMedCentralPubMedGoogle Scholar
  6. Dammhahn M, Kappeler PM (2010) Scramble or contest competition over food in solitarily foraging mouse lemurs (Microcebus spp.): new insights from stable isotopes. Am J Phys Anthropol 141:181–189PubMedGoogle Scholar
  7. Dewar RE, Richard AF (2007) Evolution in the hypervariable environment of Madagascar. Proc Natl Acad Sci U S A 104:13723–13727CrossRefPubMedCentralPubMedGoogle Scholar
  8. Dixson AF (1998) Primate sexuality: comparative studies of the prosimians, monkeys, apes, and humans. Oxford University Press, New YorkGoogle Scholar
  9. Dowell SF (2001) Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg Infect Dis 7:369–374CrossRefPubMedCentralPubMedGoogle Scholar
  10. Durden LA, Zohdy S, Laakkonen J (2010) Lice and ticks of the eastern rufous mouse lemur, Microcebus rufus, with descriptions of the male and third instar nymph of Lemurpediculus verruculosus (Phthiraptera: Anoplura). J Parasitol 96:874–878CrossRefPubMedGoogle Scholar
  11. Eberle M, Kappeler PM (2004) Selected polyandry: female choice and inter-sexual conflict in a small nocturnal solitary primate (Microcebus murinus). Behav Ecol Sociobiol 57:91–100CrossRefGoogle Scholar
  12. Gillespie TR, Chapman CA (2008) Forest fragmentation, the decline of an endangered primate, and changes in host-parasite interactions relative to an unfragmented forest. Am J Primatol 70:222–230CrossRefPubMedGoogle Scholar
  13. Hamann MI, Kehr AI, González CE (2014) Helminth community structure in the Argentinean bufonid Melanophryniscus klappenbachi: importance of habitat use and season. Paratisol Res 113:3639–3649Google Scholar
  14. Hardin JW, Hilbe JM (2013) Generalized estimating equations, 2nd edn. Taylor & Francis Group, Boca RatonGoogle Scholar
  15. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162CrossRefPubMedGoogle Scholar
  16. Højsgaard S, Halekoh U, Yan J (2006) The R package geepack for generalized estimating equations. J Stat Softw 15:1–11Google Scholar
  17. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi: 10.1002/Bimj.200810425 CrossRefPubMedGoogle Scholar
  18. Huffman MA (1997) Current evidence for self-medication in primates: a multidisciplinary perspective. Yrbk Phys Anthropol 40:171–200CrossRefGoogle Scholar
  19. Jury MR (2003) The climate of Madagascar. In: Goodman SM, Benstead JP (eds) The natural history of Madagascar. University of Chicago Press, Chicago, pp 75–87Google Scholar
  20. Kessler SE, Radespiel U, Schaber K, Strube C (2015) Tiny samples from tiny lemurs: methodological considerations for endoparasite analyses in mouse lemurs. In: Lehman SM, Radespiel U, Zimmermann E (eds) Gremlins of the night: biology, behavior, and conservation biogeography of the Cheirogaleidae. Cambridge University Press, Cambridge, in revisionGoogle Scholar
  21. Kovats RS, Campbell-Lendrum DH, McMichael AJ, Woodward A, Cox JS (2001) Early effects of climate change: do they include changes in vector-borne disease? Philos Trans R Soc Lond B Biol Sci 356:1057–1068CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kuznetsova A, Brockhoff PB, Christensen RHB (2014) lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-11 edn.
  23. Lamková K, Śimková A, Paliková M, Jurajdsa P, Lojek A (2007) Seasonal changes of immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitol Res 101:775–789CrossRefPubMedGoogle Scholar
  24. Lutermann H, Schmelting B, Radespiel U, Ehresmann P, Zimmermann E (2006) The role of survival for the evolution of female philopatry in a solitary forager, the grey mouse lemur (Microcebus murinus). Proc Biol Sci 273:2527–2533CrossRefPubMedCentralPubMedGoogle Scholar
  25. MacIntosh AJJ, Hernandez AD, Huffman MA (2010) Host age, sex, and reproductive seasonality affect nematode parasitism in wild Japanese macaques. Primates 51:353–364CrossRefPubMedGoogle Scholar
  26. Meusel C (2009) Vergleichende Untersuchung zum saisonalen Nahrungsspektrum von zwei sympatrischen und allopatrischen Mausmakiarten (Microcebus murinus, M. ravelobensis) - Ergebnisse von Kotanalysen. B.Sc. thesis, Leibniz University HannoverGoogle Scholar
  27. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  28. Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192CrossRefPubMedGoogle Scholar
  29. Nelson RJ, Demas GE, Klein SL, Kriegsfeld LJ (2002) Seasonal patterns of stress, immune function and disease. Cambridge University Press, New YorkCrossRefGoogle Scholar
  30. Nunn CL, Altizer S (2006) Infectious diseases in primates. Oxford University Press, OxfordCrossRefGoogle Scholar
  31. Olivieri G, Zimmermann E, Randrianambinina B, Rasoloharijaona S, Rakotondravony D, Guschanski K, Radespiel U (2007) The ever-increasing diversity in mouse lemurs: three new species in north and northwestern Madagascar. Mol Phyl Evol 43:309–327CrossRefGoogle Scholar
  32. Orelien JG, Zhai J, Morris R, Cohn R (2002) An approach to performing multiple comparisons with a control in GEE models. Commun Stat-Theory Methods 31:87–105. doi: 10.1081/Sta-120002436 CrossRefGoogle Scholar
  33. Park AW, Gubbins S, Gilligan CA (2002) Extinction times for closed epidemics: the effects of host spatial structure. Ecol Lett 5:747–755. doi: 10.1046/J.1461-0248.2002.00378.X CrossRefGoogle Scholar
  34. Pedersen AB, Altizer S, Poss M, Cunningham AA, Nunn CL (2005) Patterns of host specificity and transmission among parasites of wild primates. Int J Parasitol 35:647–657CrossRefPubMedGoogle Scholar
  35. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  36. Radespiel U (2000) Sociality in the gray mouse lemur (Microcebus murinus) in northwestern Madagascar. Am J Primatol 51:21–40CrossRefPubMedGoogle Scholar
  37. Radespiel U (2006) Ecological diversity and seasonal adaptations of mouse lemurs (Microcebus spp.). In: Gould L, Sauther ML (eds) Lemurs: ecology and adaptation. Springer, New York, pp 211–233CrossRefGoogle Scholar
  38. Radespiel U, Cepok S, Zietemann V, Zimmermann E (1998) Sex-specific usage patterns of sleeping sites in grey mouse lemurs (Microcebus murinus) in northwestern Madagascar. Am J Primatol 46:77–84CrossRefPubMedGoogle Scholar
  39. Radespiel U, Sarikaya Z, Zimmermann E, Bruford MW (2001) Sociogenetic structure in a free-living nocturnal primate population: sex-specific differences in the grey mouse lemur (Microcebus murinus). Behav Ecol Sociobiol 50:493–502CrossRefGoogle Scholar
  40. Radespiel U, Ehresmann P, Zimmermann E (2003) Species-specific usage of sleeping sites in two sympatric mouse lemur species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. Am J Primatol 59:139–151CrossRefPubMedGoogle Scholar
  41. Radespiel U, Reimann W, Rahelinirina M, Zimmermann E (2006) Feeding ecology of sympatric mouse lemur species in northwestern Madagascar. Int J Primatol 27:311–321CrossRefGoogle Scholar
  42. Radespiel U, Jurić M, Zimmerman E (2009) Sociogenetic structures, dispersal and the risk of inbreeding in a small nocturnal lemur, the golden-brown mouse lemur (Microcebus ravelobensis). Behaviour 146:607–628CrossRefGoogle Scholar
  43. Radespiel U, Ratsimbazafy JH, Rasoloharijaona S et al (2012) First indications of a highland specialist among mouse lemurs (Microcebus spp.) and evidence for a new mouse lemur species from eastern Madagascar. Primates 53:157–170CrossRefPubMedGoogle Scholar
  44. Raharivololona BM (2006) Gastrointestinal parasites of Cheirogaleus spp. and Microcebus murinus in the littoral forest of Mandena, Madagascar. Lemur News 11:31–35Google Scholar
  45. Raharivololona BM, Ganzhorn JU (2009) Gastrointestinal parasite infection of the gray mouse lemur (Microcebus murinus) in the littoral forest of Mandena, Madagascar: effects of forest fragmentation and degradation. Mad Cons Dev 4:103–112Google Scholar
  46. Raharivololona BM, Ganzhorn JU (2010) Seasonal variations in gastrointestinal parasites excreted by the gray mouse lemur Microcebus murinus in Madagascar. Endanger Species Res 11:113–122. doi: 10.3354/esr00255 CrossRefGoogle Scholar
  47. Rakotondravony R, Radespiel U (2009) Varying patterns of coexistence of two mouse lemur species (Microcebus ravelobensis and M. murinus) in a heterogeneous landscape. Am J Primatol 71:928–938CrossRefPubMedGoogle Scholar
  48. Rasoloarison RM, Weisrock DW, Yoder AD, Rakotondravony D, Kappeler PM (2013) Two new species of mouse lemurs (Cheirogaleidae: Microcebus) from Eastern Madagascar. Int J Primatol 34:455–469CrossRefGoogle Scholar
  49. Rendigs A, Radespiel U, Wrogemann D, Zimmermann E (2003) Relationship between microhabitat structure and distribution of mouse lemurs (Microcebus spp.) in Northwestern Madagascar. Int J Primatol 24:47–64CrossRefGoogle Scholar
  50. Rodriguez IA, Rasoazanabary E, Godfrey LR (2012) Multiple ectoparasites infest Microcebus griseorufus at Beza Mahafaly Special Reserve, Madagascar. Mad Cons Dev 7:45–48Google Scholar
  51. Rogers WP, Sommerville RI (1963) The ineffective stage of nematode parasites and its significance in parasitism. Adv Parasitol 1:109–177CrossRefPubMedGoogle Scholar
  52. Rohlf FJ, Sokal RR (2012) Biometry. Palgrave Macmillan, BasingstokeGoogle Scholar
  53. Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450CrossRefPubMedGoogle Scholar
  54. Schmelting B, Ehresmann P, Lutermann H, Randrianambinina B, Zimmermann E (2000) Reproduction of two sympatric mouse lemur species (Microcebus murinus and M. ravelobensis) in north-west Madagascar: first results of a long term study. In: Lourenço WR, Goodman SM (eds) Diversité et Endémisme à Madagascar. Société de Biogéographie, Paris, pp 165–175Google Scholar
  55. Schwensow N, Dausmann K, Eberle M, Fietz J, Sommer S (2010) Functional associations of similar MHC alleles and shared parasite species in two sympatric lemurs. Infect Genet Evol 10:662–668CrossRefPubMedGoogle Scholar
  56. Setchell JM, Bedjabaga IB, Goossens B, Reed P, Wickings EJ, Knapp LA (2007) Parasite prevalence, abundance, and diversity in a semi-free-ranging colony of Mandrillus sphinx. Int J Primatol 28:1345–1362CrossRefGoogle Scholar
  57. Siemers BM et al (2007) Sensory basis of food detection in wild Microcebus murinus. Int J Primatol 28:291–304CrossRefGoogle Scholar
  58. Śimková A, Jarkovský J, Koubková B, Baruš V, Prokeš M (2005) Associations between fish reproductive cycle and the dynamics of metazoan parasite infection. Parasitol Res 95:65–72CrossRefPubMedGoogle Scholar
  59. Stuart MD, Greenspan LL, Glander KE, Clarke MR (1990) A coprological survey of parasites of wild mantled howling monkeys, Alouatta palliata palliata. J Wildl Dis 26:547–549CrossRefPubMedGoogle Scholar
  60. Thorén S, Quietzsch F, Schwochow D, Sehen L, Meusel C, Meares K, Radespiel U (2011) Seasonal changes in feeding ecology and activity patterns of two sympatric mouse lemur species, the gray mouse lemur (Microcebus murinus) and the golden-brown mouse lemur (M. ravelobensis), in northwestern Madagascar. Int J Primatol 32:566–586CrossRefGoogle Scholar
  61. Trejo-Macias G, Estrada A (2012) Risk factors connected to gastrointestinal parasites in mantled Alouatta palliata mexicana and black howler monkeys Alouatta pigra living in continuous and in fragmented rainforests in Mexico. Curr Zool 58:375–383Google Scholar
  62. Vincente J, Fierro Y, Gortazar C (2005) Seasonal dynamics of the fecal excretion of Elaphostrongylus cervi (Nematoda, Metastrongyloidea) first-stage larvae in Iberian red deer (Cervus elaphus hispanicus) from southern Spain. Parasitol Res 95:60–64CrossRefGoogle Scholar
  63. Vitone ND, Altizer S, Nunn CL (2004) Body size, diet and sociality influence the species richness of parasitic worms in anthropoid primates. Evol Ecol Res 6:183–199Google Scholar
  64. Webster LMI, Mello LV, Mougeot F, Martinez-Padilla J, Paterson S, Piertney SB (2011) Identification of genes responding to nematode infection in red grouse. Mol Ecol Resour 11:305–313. doi: 10.1111/j.1755-0998.2010.02912.x CrossRefPubMedGoogle Scholar
  65. Weidt A, Hagenah N, Randrianambinina B, Radespiel U, Zimmermann E (2004) Social organization of the golden brown mouse lemur (Microcebus ravelobensis). Am J Phys Anthropol 123:40–51CrossRefPubMedGoogle Scholar
  66. Wenz A, Heymann EW, Petney TN, Taraschewski HF (2010) The influence of human settlements on the parasite community in two species of Peruvian tamarin. Parasitology 137:675–684CrossRefPubMedGoogle Scholar
  67. Xu Y, Lee CF, Cheung YB (2014) Analyzing binary outcome data with small clusters: a simulation study. Commun Stat-Simul Comput 43:1771–1782. doi: 10.1080/03610918.2012.744044 CrossRefGoogle Scholar
  68. Zimmermann E, Cepok S, Rakotoarison N, Zietemann V, Radespiel U (1998) Sympatric mouse lemurs in north-west Madagascar: a new rufous mouse lemur species (Microcebus ravelobensis). Folia Primatol 69:106–114CrossRefPubMedGoogle Scholar
  69. Zohdy S, Kemp AD, Durden LA, Wright PC, Jernvall J (2012) Mapping the social network: tracking lice in a wild primate (Microcebus rufus) population to infer social contacts and vector potential. BMC Ecol 12:4. doi: 10.1186/1472-6785-12-4 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ute Radespiel
    • 1
    Email author
  • K. Schaber
    • 1
  • S. E. Kessler
    • 1
    • 2
    • 5
  • F. Schaarschmidt
    • 3
  • C. Strube
    • 4
  1. 1.Institute of ZoologyUniversity of Veterinary Medicine HanoverHanoverGermany
  2. 2.Arizona State UniversityTempeUSA
  3. 3.Institute for BiostatisticsLeibniz University HanoverHanoverGermany
  4. 4.Institute of ParasitologyUniversity of Veterinary Medicine HanoverHanoverGermany
  5. 5.Department of AnthropologyMcGill UniversityMontrealCanada

Personalised recommendations