Advertisement

Parasitology Research

, Volume 114, Issue 2, pp 721–726 | Cite as

Development of microsatellite markers in Caryophyllaeus laticeps (Cestoda: Caryophyllidea), monozoic fish tapeworm, using next-generation sequencing approach

  • Ivica Králová-HromadováEmail author
  • Gabriel Minárik
  • Eva Bazsalovicsová
  • Peter Mikulíček
  • Alexandra Oravcová
  • Lenka Pálková
  • Vladimíra Hanzelová
Original Paper

Abstract

Caryophyllaeus laticeps (Pallas 1781) (Cestoda: Caryophyllidea) is a monozoic tapeworm of cyprinid fishes with a distribution area that includes Europe, most of the Palaearctic Asia and northern Africa. Broad geographic distribution, wide range of definitive fish hosts and recently revealed high morphological plasticity of the parasite, which is not in an agreement with molecular findings, make this species to be an interesting model for population biology studies. Microsatellites (short tandem repeat (STR) markers), as predominant markers for population genetics, were designed for C. laticeps using a next-generation sequencing (NGS) approach. Out of 165 marker candidates, 61 yielded PCR products of the expected size and in 25 of the candidates a declared repetitive motif was confirmed by Sanger sequencing. After the fragment analysis, six loci were proved to be polymorphic and tested for heterozygosity, Hardy-Weinberg equilibrium and the presence of null alleles on 59 individuals coming from three geographically widely separated populations (Slovakia, Russia and UK). The number of alleles in particular loci and populations ranged from two to five. Significant deficit of heterozygotes and the presence of null alleles were found in one locus in all three populations. Other loci showed deviations from Hardy-Weinberg equilibrium and the presence of null alleles only in some populations. In spite of relatively low polymorphism and the potential presence of null alleles, newly developed microsatellites may be applied as suitable markers in population genetic studies of C. laticeps.

Keywords

Population genetics STR marker design Non-segmented fish tapeworms Caryophyllidea 

Notes

Acknowledgments

The authors would like to acknowledge Prof. Tomáš Scholz (Biology Centre ASCR, Institute of Parasitology, České Budějovice, Czech Republic) for the donation of C. laticeps material from his collection. The work was financially supported by the Slovak Research and Development Agency under contract APVV-0653-11 and as implementation of projects Revogene Research Centre for Molecular Genetics (ITMS26240220067) and Centre of Excellence for Parasitology (ITMS26220120022) supported by the Research and Development Operational Programme funded by the European Regional Development Fund.

References

  1. Akhmerov AK (1960) Tapeworms of fish of the Amur River. Tr Gelminthologicheskoi Lab 10:15–31 (In Russian)Google Scholar
  2. Anderson RM (1974) Population dynamics of the cestode Caryophyllaeus laticeps (Pallas, 1781) in the bream (Abramis brama L.). J Anim Ecol 43:305–321CrossRefGoogle Scholar
  3. Anderson RM (1976) Seasonal variation in population dynamics of Caryophyllaeus laticeps. Parasitology 72:281–305PubMedCrossRefGoogle Scholar
  4. Araujo R, Amorim A, Gusmão L (2012) Diversity and specificity of microsatellites within Aspergillus section Fumigati. BMC Microbiol 12:154PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aydoğdu A, Emence H, Innal D (2008) The occurrence of helminth parasites in vimba (Vimba vimba L. 1758) of Golbasi (Bursa) Dam Lake, Turkey. Acta Parasitol Turc 32:86–90Google Scholar
  6. Bazsalovicsová E, Králová-Hromadová I, Štefka J, Scholz T, Hanzelová V, Vávrová S, Szemes T, Kirk R (2011) Population study of Atractolytocestus huronensis (Cestoda: Caryophyllidea), an invasive parasite of common carp introduced to Europe: mitochondrial cox1 haplotypes and intragenomic ribosomal ITS2 variants. Parasitol Res 109:125–131PubMedCrossRefGoogle Scholar
  7. Bazsalovicsová E, Králová-Hromadová I, Štefka J, Scholz T (2012) Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis. Parasitol Res 110:1621–1629PubMedCrossRefGoogle Scholar
  8. Bazsalovicsová E, Králová-Hromadová I, Brabec J, Hanzelová V, Oros M, Scholz T (2014) Conflict between morphology and molecular data: a case of the genus Caryophyllaeus (Cestoda: Caryophyllidea), monozoic tapeworms of cyprinid fishes. Folia Parasitol 61:347–354PubMedGoogle Scholar
  9. Brabec J, Kuchta R, Scholz T (2006) Paraphyly of the Pseudophyllidea (Platyhelminthes: Cestoda): circumscription of monophyletic clades based on phylogenetic analysis of ribosomal RNA. Int J Parasitol 36:1535–1541PubMedCrossRefGoogle Scholar
  10. Brabec J, Scholz T, Králová-Hromadová I, Bazsalovicsová E, Olson PD (2012) Substitution saturation and nuclear paralogs of commonly employed phylogenetic markers in the Caryophyllidea, an unusual group of non-segmented tapeworms (Platyhelminthes). Int J Parasitol 42:259–267PubMedCrossRefGoogle Scholar
  11. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  12. Chubb JC (1982) Seasonal occurrence of helminths in freshwater fishes. Part IV. Adult Cestoda, Nematoda and Acanthocephala. Adv Parasitol 20:1–292PubMedCrossRefGoogle Scholar
  13. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113PubMedCrossRefGoogle Scholar
  14. Dubinina MN (1987) Class tapeworms—Cestoda Rudolphi, 1808. In: Bauer ON (ed) Key to the parasites of freshwater fishes of the USSR. Nauka, Leningrad, pp 5–76 (In Russian)Google Scholar
  15. Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ (2011) Rise of the machines—recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour 11:1093–1101PubMedCrossRefGoogle Scholar
  16. Goldstein DB, Schlötterer C (2000) Microsatellites. Evolution and application. Oxford University Press, New YorkGoogle Scholar
  17. Hanzelová V, Oros M, Barčák D, Miklisová D, Kirin D, Scholz T (2014) Morphological polymorphism in tapeworms: redescription of Caryophyllaeus laticeps (Pallas, 1781) (Cestoda: Caryophyllidea) and characterisation of its morphotypes from different fish hosts. Syst Parasitol (in press)Google Scholar
  18. Hurtrez-Boussès S, Durand P, Jabbour-Zahab R, Guégan JF, Meunier C, Bargues MD, Mas-Coma S, Renaud F (2004) Isolation and characterization of microsatellite markers in the liver fluke (Fasciola hepatica). Mol Ecol Notes 4:689–690CrossRefGoogle Scholar
  19. Jirsa F, Konecny R, Frank C (2008) The occurrence of Caryophyllaeus laticeps in the nase Chondrostoma nasus from Australian rivers: possible anthropogenic factors. J Helminthol 82:53–58PubMedCrossRefGoogle Scholar
  20. Kebede N, Oghumu S, Worku A, Hailu A, Varikuti S, Satoskar AR (2013) Multilocus microsatellite signature and identification of specific molecular markers for Leishmania aethiopica. Parasitol Vectors 6:160. doi: 10.1186/1756-3305-6-160 CrossRefGoogle Scholar
  21. Kennedy CR (1969) Seasonal incidence and development of the cestode Caryophyllaeus laticeps (Pallas) in the River Avon. Parasitology 59:783–794PubMedGoogle Scholar
  22. Khalil LF (1971) Check list of the helminth parasites of African freshwater fishes. Commonwealth Agricultural Bureaux, SloughGoogle Scholar
  23. Králová-Hromadová I, Štefka J, Špakulová M, Orosová M, Bombarová M, Hanzelová V, Bazsalovicsová E, Scholz T (2010) Intraindividual ITS1 and ITS2 ribosomal sequence variation linked with multiple rDNA loci: a case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp. Int J Parasitol 40:175–181PubMedCrossRefGoogle Scholar
  24. Králová-Hromadová I, Bazsalovicsová E, Oros M, Scholz T (2012) Sequence structure and intragenomic variability of ribosomal ITS2 in monozoic tapeworms of the genus Khawia (Cestoda: Caryophyllidea), parasites of cyprinid fish. Parasitol Res 111:1621–1627PubMedCrossRefGoogle Scholar
  25. Králová-Hromadová I, Bazsalovicsová E, Bokorová S, Hanzelová V (2013) Ribosomal ITS2 structure in Caryophyllaeus laticeps and Caryophyllaeus brachycollis (Cestoda: Caryophyllidea), parasites of cyprinid fish. Helminthologia 50:235–237CrossRefGoogle Scholar
  26. Mackiewicz JS (1972) Caryophyllidea (Cestoidea): a review. Exp Parasitol 31:417–512PubMedCrossRefGoogle Scholar
  27. Mackiewicz JS (1994) Order Caryophyllidea van Beneden in Carus, 1863. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, pp 21–43Google Scholar
  28. Mackiewicz JS (2003) Caryophyllidea (Cestoidea): molecules, morphology and evolution. Acta Parasitol 48:143–154Google Scholar
  29. Macko JK, Ryšavý B, Špakulová M, Kráľová I (1993) Synopsis of cestodes in Slovakia I. Cestodaria, Cestoidea: Caryophyllidea, Spathebothriidea, Pseudophyllidea, Proteocephalidea. Helminthologia 30:85–91Google Scholar
  30. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 263:403–404CrossRefGoogle Scholar
  31. Milbrink G (1975) Population biology of the cestode Caryophyllaeus laticeps (Pallas) in bream, Abramis brama (L.), and the feeding of fish on oligochaetes. Rep Inst Freshwat Res Drottningholm Lund 54:36–51Google Scholar
  32. Minárik G, Bazsalovicsová E, Zvijáková ŠJ, Pálková L, Králová-Hromadová I (2014) Development and characterization of multiplex panels of polymorphic microsatellite loci in giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), using next-generation sequencing approach. Mol Biochem Parasitol 195:30–33PubMedCrossRefGoogle Scholar
  33. Moravec F (2001) Checklist of the metazoan parasites of fishes of the Czech Republic and the Slovak Republic (1873–2000). Academia, Praha, p 169Google Scholar
  34. Olson PD, Littlewood DTJ, Bray RA, Mariaux J (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Mol Phylogenet Evol 19:443–467PubMedCrossRefGoogle Scholar
  35. Orosová M, Králová-Hromadová I, Bazsalovicsová E, Špakulová M (2010) Karyotype, chromosomal characteristics of multiple rDNA clusters and intragenomic variability of ribosomal ITS2 in Caryophyllaeides fennica (Cestoda). Parasitol Int 59:351–357PubMedCrossRefGoogle Scholar
  36. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  37. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedCentralPubMedCrossRefGoogle Scholar
  38. Protasova E, Kuperman B, Roytman V, Poddubnaya LG (1990) Caryophyllidea of the fauna of the USSR. Nauka, Moscow, p 240 (In Russian)Google Scholar
  39. Rodrigues NB, Silva MR, Pucci MM, Minchella DJ, Sorensen R, Loverde PT, Romanha AJ, Oliviera G (2007) Microsatellite-enriched genomic libraries as a source of polymorphic loci for Schistosoma mansoni. Mol Ecol Notes 7:263–265CrossRefGoogle Scholar
  40. Scholz T (1989) Amphilinida and Cestoda, parasites of fish in Czechoslovakia. Academia, PrahaGoogle Scholar
  41. Štefka J, Gilleard JS, Grillo V, Hypša V (2007) Isolation and characterization of microsatellite loci in the tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea). Mol Ecol Notes 7:794–796CrossRefGoogle Scholar
  42. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  43. Wasimuddin ČD, Ribas A, Piálek J, de Bellocq JG, Bryja J (2012) Development and characterization of multiplex panels of microsatellite markers for Syphacia obvelata, a parasite of the house mouse (Mus musculus), using a high throughput DNA sequencing approach. Mol Biochem Parasitol 185:154–156PubMedCrossRefGoogle Scholar
  44. Žitňan R (1968) Cestoidea der Fische im Flusse Hron (ČSSR). Stud Helminthol 10:11–20Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ivica Králová-Hromadová
    • 1
    Email author
  • Gabriel Minárik
    • 2
    • 3
    • 4
  • Eva Bazsalovicsová
    • 1
  • Peter Mikulíček
    • 5
  • Alexandra Oravcová
    • 2
  • Lenka Pálková
    • 3
  • Vladimíra Hanzelová
    • 1
  1. 1.Institute of Parasitology, Slovak Academy of SciencesKošiceSlovakia
  2. 2.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  3. 3.Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
  4. 4.BratislavaSlovakia
  5. 5.Department of Zoology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations