Advertisement

Parasitology Research

, Volume 114, Issue 2, pp 613–624 | Cite as

AcCystatin, an immunoregulatory molecule from Angiostrongylus cantonensis, ameliorates the asthmatic response in an aluminium hydroxide/ovalbumin-induced rat model of asthma

  • Pengyu Ji
  • Huiling Hu
  • Xiangyun Yang
  • Xiaoxia Wei
  • Chengcheng Zhu
  • Jingchao Liu
  • Yun Feng
  • Fan Yang
  • Kamolnetr Okanurak
  • Na Li
  • Xin Zeng
  • Huanqin Zheng
  • Zhongdao Wu
  • Zhiyue Lv
Original Paper

Abstract

Epidemiological surveys have demonstrated that helminth infections are negatively related to atopic diseases, including asthma. Defining and characterising specific helminth molecules that have excellent immunomodulatory capacities as potential therapeutics for the treatment or prophylaxis of allergic manifestations are of great interest. AcCystatin, a cystatin protease inhibitor of Angiostrongylus cantonensis, is a homologue of other nematode cystatins with immunoregulatory properties. Here, we aim to determine the effects of AcCystatin on an ovalbumin/aluminium hydroxide (OVA/Al[OH]3)-induced rat model of asthma. Wistar rats were randomly divided into four groups, including a control group, an OVA/Al[OH]3-induced asthma group, a group receiving AcCystatin immunisation prior to OVA/Al[OH]3-induced asthma and a group receiving AcCystatin treatment after OVA/Al[OH]3-induced asthma. The numbers of eosinophils, basophils, neutrophils, lymphocytes and monocytes in the peripheral blood and of eosinophils in the bronchoalveolar lavage fluid (BALF) were counted for each animal. The expression levels of the cytokines interferon-γ, interleukin (IL) 4, IL-5, IL-6, IL-10, IL17A and tumour necrosis factor receptor-α in BALF, of OVA-specific immunoglobulin E in BALF and serum and of the chemokines eotaxin-1, eotaxin-2, eotaxin-3, MCP-1 and MCP-3 in lung tissue were measured. In addition, the degree of peribronchial and perivascular inflammation and the intensity of goblet cell metaplasia were qualitatively evaluated. The sensitised/challenged rats developed an extensive cell inflammatory response of the airways. AcCystatin administration significantly reduced the cellular infiltrate in the perivascular and peribronchial lung tissues and reduced both goblet mucous production and eosinophil infiltration. The rats that were treated with AcCystatin before or after sensitisation with OVA showed significant decreases in eotaxin-1, eotaxin-3 and MCP-1 expression in the lung tissue. The production of IL-4, IL-5, IL-6 and IL-17A and of OVA-specific IgE antibodies was also significantly reduced in AcCystatin-treated rats compared with untreated asthmatic rats. The AcCystatin treatment was associated with a significant increase in IL-10 levels. Our present findings provide the first demonstration that AcCystatin is an effective agent in the prevention and treatment of the airway inflammation associated with asthma.

Keywords

AcCystatin Angiostrongylus cantonensis Asthma Cytokine Chemokine Immunomodulation 

Notes

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (grant no. 2010CB530004), the National Natural Science Foundation of China (grant no. 81371836, 30771888, 81271855 and 30800966), the 111 Project (grant no. B12003) and the Research Fund for Students of Sun Yat-sen University (2012, 2014).

References

  1. Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T (1992) Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest 101(4):916–921PubMedCrossRefGoogle Scholar
  2. Akdis CA (2006) Allergy and hypersensitivity: mechanisms of allergic disease. Curr Opin Immunol 18(6):718–726PubMedCrossRefGoogle Scholar
  3. Al-Ramli W, Préfontaine D, Chouiali F, Martin JG, Olivenstein R, Lemière C (2009) Hamid Q (2009) T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol 123(5):1185–1187PubMedCrossRefGoogle Scholar
  4. Amoah AS, Forson AG, Boakye DA (2012) A review of epidemiological studies of asthma in Ghana. Ghana Med J 46(2 Suppl):23–28PubMedCentralPubMedGoogle Scholar
  5. Apter AJ (2014) Advances in adult asthma diagnosis and treatment in 2013. J Allergy Clin Immunol 133(1):49–56PubMedCrossRefGoogle Scholar
  6. Araujo MI, Hoppe B, Medeiros M Jr, Alcântara L, Almeida MC, Schriefer A, Oliveira RR, Kruschewsky R, Figueiredo JP, Cruz AA, Carvalho EM (2004) Impaired T helper 2 response to aeroallergen in helminth-infected patients with asthma. J Infect Dis 190(10):1797–1803PubMedCrossRefGoogle Scholar
  7. Arruda LK, Santos AB (2005) Immunologic responses to common antigens in helminthic infections and allergic disease. Curr Opin Allergy Clin Immunol 5(5):399–402PubMedCrossRefGoogle Scholar
  8. Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy: review of a new approach. Pharmacol Rev 55(2):241–269PubMedCrossRefGoogle Scholar
  9. Barlow JL, Flynn RJ, Ballantyne SJ, McKenzie AN (2011) Reciprocal expression of IL-25 and IL-17A is important for allergic airways hyperreactivity. Clin Exp Allergy 41(10):1447–1455PubMedCrossRefGoogle Scholar
  10. Barnes PJ (2001) Cytokine-directed therapies for asthma. J Allergy Clin Immunol 2001 108(2 Suppl):S72–S76CrossRefGoogle Scholar
  11. Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131(3):636–645PubMedCrossRefGoogle Scholar
  12. Borish L, Aarons A, Rumbyrt J, Cvietusa P, Negri J, Wenzel S (1996) Interleukin-10 regulation in normal subjects and patients with asthma. J Allergy Clin Immunol 97(6):1288–1296PubMedCrossRefGoogle Scholar
  13. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM (2000) Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 161(5):1720–1745PubMedCrossRefGoogle Scholar
  14. Brid PI, Trapani JA, Villadangos JA (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9(12):871–882CrossRefGoogle Scholar
  15. Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels RA, Bluethmann H (1994) Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 24(1):73–80PubMedCrossRefGoogle Scholar
  16. Busse WW1, Rosenwasser LJ (2003) Mechanisms of asthma. J Allergy Clin Immunol 111(3 Suppl):S799–S804PubMedCrossRefGoogle Scholar
  17. Chang EE, Chung LY, Yen CM (2004) Kinetics of change in the eotaxin concentration in serum and cerebrospinal fluid of mice infected with Angiostrongylus cantonensis. Parasitol Res 92(2):137–141PubMedCrossRefGoogle Scholar
  18. Chen W, Sivaprasad U, Gibson AM, Ericksen MB, Cunningham CM, Bass SA, Kinker KG, Finkelman FD, Wills-Karp M, Khurana Hershey GK (2013) IL-13 receptor α2 contributes to development of experimental allergic asthma. J Allergy Clin Immunol 132(4):951–958PubMedCrossRefGoogle Scholar
  19. Cooper PJ (2009) Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol 9(1):29–37PubMedCentralPubMedCrossRefGoogle Scholar
  20. Cooper PJ, Barreto M, Rodrigues LC (2006) Human allergy and intestinal helminth infections: a review of the literature and discussion of a conceptual model to investigate the possible causal association. Br Med Bull 79–80(1):203–218PubMedCrossRefGoogle Scholar
  21. de Oliveira AP, Domingos HV, Cavriani G, Damazo AS, Dos Santos Franco AL, Oliani SM, Oliveira-Filho RM, Vargaftig BB, de Lima WT (2007) Cellular recruitment and cytokine generation in a rat model of allergic lung inflammation are differentially modulated by progesterone and estradiol. Am J Physiol Cell Physiol 293(3):C1120–1128PubMedCrossRefGoogle Scholar
  22. Elliott DE, Weinstock JV (2009) Helminthic therapy: using worms to treat immune-mediated disease. Adv Exp Med Biol 666:157–166PubMedCrossRefGoogle Scholar
  23. Folkerts G, Nijkamp FP (1998) Airway epithelium more than just a barrier. Trends Pharmacol Sci 19(8):334–341PubMedCrossRefGoogle Scholar
  24. Fu CL, Ye YL, Lee YL, Chiang BL (2006) Effects of overexpression of IL-10, IL-12, TGF-β and IL-4 on allergen induced change in bronchial responsiveness. Respir Res 7:72–85PubMedCentralPubMedCrossRefGoogle Scholar
  25. Garg SK1, Croft AM, Bager P (2014) Helminth therapy (worms) for induction of remission in inflammatory bowel disease. Cochrane Database Syst Rev 1:CD009400PubMedGoogle Scholar
  26. Goodwin JE, Zhang J, Gonzalez D, Albinsson S, Geller DS (2011) Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension. J Hypertens 29(7):1347–1356PubMedCentralPubMedGoogle Scholar
  27. Hartmann S, Lucius R (2003) Modulation of host immune responses by nematode cystatins. Int J Parasitol 33(11):1291–1302PubMedCrossRefGoogle Scholar
  28. Hashimoto K1, Durbin JE, Zhou W, Collins RD, Ho SB, Kolls JK, Dubin PJ, Sheller JR, Goleniewska K, O’Neal JF, Olson SJ, Mitchell D, Graham BS, Peebles RS Jr (2005) Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. J Allergy Clin Immunol 116(3):550–557PubMedCrossRefGoogle Scholar
  29. Hoerauf A, Satoguina J, Saeftel M, Specht S (2005) Immunomodulation by filarial nematodes. Parasite Immunol 27(10–11):417–429PubMedCrossRefGoogle Scholar
  30. Hsieh CS, Heimberger AB, Gold JS, O’Garra A, Murphy KM (1992) Differential regulation of T helper phenotype development by interleukins 4 and 10 in an αβ T-cell-receptor transgenic system. Proc Natl Acad Sci U S A 89(13):6065–6069PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hurson CJ, Butler JS, Keating DT, Murray DW, Sadlier DM, O’Byrne JM, Doran PP (2007) Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathway as putative drivers of osteoporosis. BMC Musculoskelet Disord 8:12PubMedCentralPubMedCrossRefGoogle Scholar
  32. Jeffery PK (1991) Morphology of the airway wall in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 143(5 Pt 1):1152–1158PubMedCrossRefGoogle Scholar
  33. Kay AB (1991) Asthma and inflammation. J Allergy Clin Immunol 87(5):893–910PubMedCrossRefGoogle Scholar
  34. Kita H (2013) Eosinophils: multifunctional and distinctive properties. Int Arch Allergy Immunol 161(Suppl 2):3–9PubMedCentralPubMedCrossRefGoogle Scholar
  35. Klotz C, Ziegler T, Daniłowicz-Luebert E, Hartmann S (2011) Cystatins of parasitic organisms. Adv Exp Med Biol 712:208–221PubMedCrossRefGoogle Scholar
  36. Kudo M, Ishigatsubo Y, Aoki I (2013) Pathology of asthma. Front Microbiol 4:263PubMedCentralPubMedCrossRefGoogle Scholar
  37. Larché M, Akdis CA, Valenta VR (2006) Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 6(10):761–771PubMedCrossRefGoogle Scholar
  38. Lee MY, Lee JA, Seo CS, Ha H, Lee NH, Shin HK (2011) Protective effects of Mentha haplocalyx ethanol extract (MH) in a mouse model of allergic asthma. Phytother Res 25(6):863–869PubMedCrossRefGoogle Scholar
  39. Leonardi-Bee J, Pritchard D, Britton J (2006) Asthma and current intestinal parasite infection: systematic review and Meta-analysis. Am J Respir Crit Care Med 174(5):514–523PubMedCrossRefGoogle Scholar
  40. Li S, Yang F, Ji P, Zeng X, Wu X, Wei J, Ouyang L, Liang J, Zheng H, Wu Z, Lv Z (2014) Eosinophil chemotactic chemokine profilings of the brain from permissive and non-permissive hosts infected with Angiostrongylus cantonenis. Parasitol Res 113(2):517–525PubMedCrossRefGoogle Scholar
  41. Liu YH, Han YP, Li ZY, Wei J, He HJ, Xu CZ, Zheng HQ, Zhan XM, Wu ZD, Lv ZY (2010) Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from Angiostrongylus cantonensis. Parasitol Res 107(4):915–922PubMedCrossRefGoogle Scholar
  42. Lukacs NW1, Oliveira SH, Hogaboam CM (1999) Chemokines in asthma: redundancy of functions or a co-ordinated effort? J Clin Invest 104(8):995–999PubMedCentralPubMedCrossRefGoogle Scholar
  43. Martinez FD, Vercelli D (2013) Asthma. Lancet 382(9901):1360–1372PubMedCrossRefGoogle Scholar
  44. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Pagé N, Olivenstein R, Elias J, Chakir J (2001) IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108(3):430–438PubMedCrossRefGoogle Scholar
  45. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRefGoogle Scholar
  46. Nakajima H, Hirose K (2010) Role of IL-23 and Th17 cells in airway Inflammation in asthma. Immune Netw 10(1):1–4PubMedCentralPubMedCrossRefGoogle Scholar
  47. Newcomb DC, Peebles RS Jr (2013) Th17-mediated inflammation in asthma. Curr Opin Immunol 25(6):755–760PubMedCrossRefGoogle Scholar
  48. Newcomb DC, Boswell MG, Huckabee MM, Goleniewska K, Dulek DE, Reiss S, Lukacs NW, Kolls JK, Peebles RS Jr (2012) IL-13 regulates Th17 secretion of IL-17A in an IL-10-dependent manner. J Immunol 188(3):1027–1035PubMedCentralPubMedCrossRefGoogle Scholar
  49. Newcomb DC, Boswell MG, Sherrill TP, Polosukhin VV, Boyd KL, Goleniewska K, Brody SL, Kolls JK, Adler KB, Peebles RS Jr (2013) IL-17A induces STAT6-independent airway mucous cell metaplasia. Am J Respir Cell Mol Biol 48(6):711–716PubMedCentralPubMedCrossRefGoogle Scholar
  50. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med 353(16):1711–1723PubMedCrossRefGoogle Scholar
  51. Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA (1997) Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 185(3):461–469PubMedCentralPubMedCrossRefGoogle Scholar
  52. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326(5):298–304PubMedCrossRefGoogle Scholar
  53. Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1(8637):520–524PubMedCrossRefGoogle Scholar
  54. Romagnani S (2004) Immunologic influences on allergy and the TH1/TH2 balance. J Allergy Clin Immunol 113(3):395–400PubMedCrossRefGoogle Scholar
  55. Rothenberg ME, Zimmermann N, Mishra A, Brandt E, Birkenberger LA, Hogan SP, Foster PS (1999) Chemokines and chemokine receptors: their role in allergic airway disease. J Clin Immunol 19(5):250–265PubMedCrossRefGoogle Scholar
  56. Schnoeller C, Rausch S, Pillai S, Avagyan A, Wittig BM, Loddenkemper C, Hamann A, Hamelmann E, Lucius R, Hartmann S (2008) A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 180(6):4265–4272PubMedCrossRefGoogle Scholar
  57. Scrivener S, Yemaneberhan H, Zebenigus M, Tilahun D, Girma S, Ali S, McElroy P, Custovic A, Woodcock A, Pritchard D, Venn A, Britton J (2001) Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case–control study. Lancet 358(9292):1493–1499PubMedCrossRefGoogle Scholar
  58. Sears MR (1997) Epidemiology of childhood asthma. Lancet 350(9083):1015–1020PubMedCrossRefGoogle Scholar
  59. Shakouri AA, Bahna SL (2013) Hypersensitivity to antihistamines. Allergy Asthma Proc 34(6):488–496PubMedCrossRefGoogle Scholar
  60. Smits HH, Everts B, Hartgers FC, Yazdanbakhsh M (2010) Chronic helminth infections protect against allergic diseases by active regulatory processes. Curr Allergy Asthma Rep 10(1):3–12PubMedCentralPubMedCrossRefGoogle Scholar
  61. Tattersfield AE, Knox AJ, Britton JR, Hall IP (2002) Asthma. Lancet 360(9342):1313–1322PubMedCrossRefGoogle Scholar
  62. Taube C, Dakhama A, Gelfand EW (2004) Insights into the pathogenesis of asthma utilizing murine models. Int Arch Allergy Immunol 135(2):173–186PubMedCrossRefGoogle Scholar
  63. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA (2006) Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology 117(4):433–442PubMedCentralPubMedCrossRefGoogle Scholar
  64. Turner JD, Jackson JA, Faulkner H, Behnke J, Else KJ, Kamgno J, Boussinesq M, Bradley JE (2008) Intensity of intestinal infection with multiple worm species is related to regulatory cytokine output and immune hyporesponsiveness. J Infect Dis 197(8):1204–1212PubMedCrossRefGoogle Scholar
  65. Urbańska J, Karewicz A2, Nowakowska M (2014) Polymeric delivery systems for dexamethasone. Life Sci 96(1–2):1–6PubMedCrossRefGoogle Scholar
  66. Urry Z, Xystrakis E, Hawrylowicz CM (2006) Interleukin-10-secreting regulatory T cells in allergy and asthma. Curr Allergy Asthma Rep 6(5):363–371PubMedCrossRefGoogle Scholar
  67. van den Biggelaar AH, van Ree R, Rodrigues LC, Lell B, Deelder AM, Kremsner PG, Yazdanbakhsh M (2000) Decreased atopy in children infected with Schistosoma haematobium a role for parasite-induced interleukin-10. Lancet 356(9243):1723–1727PubMedCrossRefGoogle Scholar
  68. Vray B, Hartmann S, Hoebeke J (2002) Immunomodulatory properties of cystatins. Cell Mol Life Sci 59(9):1503–1512PubMedCrossRefGoogle Scholar
  69. Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, Saito Y, Hatano M, Tokuhisa T, Iwakura Y, Puccetti P, Iwamoto I, Nakajima H (2008) IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 178(10):1023–1032PubMedCrossRefGoogle Scholar
  70. Wammes LJ, Mpairwe H, Elliott AM, Yazdanbakhsh M (2014) Helminth therapy or elimination: epidemiological, immunological, and clinical considerations. Lancet Infect Dis S1473–3099(14):70771–70776Google Scholar
  71. Wild JS, Sigounas A, Sur N, Siddiqui MS, Alam R, Kurimoto M, Sur S (2000) IFN-gamma-inducing factor (IL-18) increases allergic sensitization, serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J Immunol 164(5):2701–2710PubMedCrossRefGoogle Scholar
  72. Yuk JE, Lee MY, Kwon OK, Cai XF, Jang HY, Oh SR, Lee HK, Ahn KS (2011) Effects of astilbic acid on airway hyperresponsiveness and inflammation in a mouse model of allergic asthma. Int Immunopharmacol 11(2):266–273PubMedCrossRefGoogle Scholar
  73. Zavasnik-Bergant T (2008) Cystatin protease inhibitors and immune functions. Front Biosci 13:4625–4637PubMedCrossRefGoogle Scholar
  74. Zhou DY, Du Q, Li RR, Huang M, Zhang Q, Wei GZ (2011) Grape seed proanthocyanidin extract attenuates airway inflammation and hyperresponsiveness in a murine model of asthma by downregulating inducible nitric oxide synthase. Planta Med 77(14):1575–1581PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pengyu Ji
    • 1
    • 2
  • Huiling Hu
    • 1
    • 2
  • Xiangyun Yang
    • 1
    • 2
  • Xiaoxia Wei
    • 1
    • 2
  • Chengcheng Zhu
    • 1
    • 2
  • Jingchao Liu
    • 1
    • 2
  • Yun Feng
    • 1
    • 2
  • Fan Yang
    • 1
    • 2
  • Kamolnetr Okanurak
    • 3
  • Na Li
    • 1
    • 2
  • Xin Zeng
    • 1
    • 2
  • Huanqin Zheng
    • 1
    • 2
  • Zhongdao Wu
    • 1
    • 2
  • Zhiyue Lv
    • 1
    • 2
  1. 1.Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouChina
  2. 2.Ministry of Education Key Laboratory of Control of Tropical DiseasesSun Yat-sen UniversityGuangzhouChina
  3. 3.Department of Social and Environmental Medicine, Faculty of Tropical MedicineMahidol UniversityBangkokThailand

Personalised recommendations