Parasitology Research

, Volume 113, Issue 10, pp 3697–3701 | Cite as

Acaricide activity in vitro of Acmella oleracea against Rhipicephalus microplus

  • K. N. C. Castro
  • D. F. Lima
  • L. C. Vasconcelos
  • J. R. S. A. Leite
  • R. C. Santos
  • A. A. Paz Neto
  • L. M. Costa-Júnior
Original Paper


Cattle tick control has been limited by the resistance of these parasites to synthetic acaricides. Natural products are a possible alternative as they have different mechanisms of action. Acmella oleracea is a native plant with a large cultivated area in the Amazon region and could be easily used for large-scale preparation of a commercial product. This study evaluated the in vitro action of the hexane extract of the aerial parts of A. oleracea on larvae and engorged females of the cattle tick Rhipicephalus microplus. Spilanthol was the major constituent with a content of 14.8 % in the extract. The hexane extract of A. oleracea was highly effective against larvae of R. microplus with an LC50 of 0.8 mg mL−1. Against engorged females, hexane extract of A. oleracea reduced oviposition and hatchability of eggs with an LC50 of 79.7 mg mL−1. Larvae and engorged females were killed by the hexane extract with high efficiency (>95 %) at concentrations of 3.1 and 150.0 mg mL−1, respectively. These results demonstrate that the hexane extract of A. oleracea has significant activity against R. microplus and has potential to be developed into formulations for tick control.


Cattle Control Extract Tick 



The authors wish to thank João Batista Alves de Souza for his valuable contribution in the experiments.


  1. Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472PubMedCrossRefGoogle Scholar
  2. Andreotti R, Garcia MV, Cunha RC, Barros JC (2013) Protective action of Tagetes minuta (Asteraceae) essential oil in the control of Rhipicephalus microplus (Canestrini, 1887) (Acari: Ixodidae) in a cattle pen trial. Vet Parasitol 197:341–345PubMedCrossRefGoogle Scholar
  3. Bennett GF (1974) Oviposition of Boophilus microplus (Canestrini) (Acarida: Ixodidae) I. Influence of tick size on egg production. Acarologia 16:52–61PubMedGoogle Scholar
  4. Boonen J, Baert B, Roche N, Burvenich C, De Spiegeleer B (2010a) Transdermal behaviour of the N-alkylamide spilanthol (affinin) from Spilanthes acmella (Compositae) extracts. J Ethnopharmacol 127:77–84PubMedCrossRefGoogle Scholar
  5. Boonen J, Baert B, Burvenich C, Blondeel F, De Saeger S, De Spiegeleer B (2010b) LC-MS profiling of N-alkylamides in Spilanthes acmella extract and the transmucosal behaviour of its main bio-active spilanthol. J Pharm Biomed Anal 53(3):243–249PubMedCrossRefGoogle Scholar
  6. Borges LMF, Ferri PH, Silva WJ, Silva WC, Silva JG (2003) In vitro efficacy of extracts of Melia azedarach against the tick Boophilus microplus. Med Vet Entomol 17:228–231. Accessed on 19 Jan 2013. doi: 10.1046/j.1365-2915.2003.00426.x
  7. Cavalcanti VMS (2008) Extração de espilantol de Spilanthes acmella var oleraceae com dióxido de carbono supercrítico. 2008. p. Tese (Doutorado em Engenharia Química) - Universidade Estadual de Campinas, CampinasGoogle Scholar
  8. Chagas ACS, Georgetti CS, Carvalho CO, Oliveira MCS, Rodrigues RA, Foglio MA, Magalhães PM (2011) In vitro activity of Artemisia annua L (Asteraceae) extracts against Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet 20(1):31–35PubMedCrossRefGoogle Scholar
  9. Chungsamarnyart N, Jansawan W (1993) Acaricidal effect of practical crude-extracts of plants against tropical cattle tick (Boophilus microplus). Kasetsart J (Nat Sci Suppl) 27:57–64Google Scholar
  10. Chungsamarnyart N, Jiwajinda S, Jansawan W (1991a) Acaricidal effect of plant crude-extracts on the tropical cattle tick (Boophilus microplus). Kasetsart J (Nat Sci Suppl) 25:90–100Google Scholar
  11. Chungsamarnyart N, Jiwajinda S, Jansawan W (1991b) Larvicidal effect of plant crude-extracts on the tropical cattle tick (Boophilus microplus). Kasetsart J (Nat Sci Suppl) 25:80–89Google Scholar
  12. Drummond RO, Ernest SE, Trevino JL, Glandney WJ, Graham OH (1973) Boophilus annulatus and B. microplus: laboratory tests of insecticides. J Econ Entomol 66(1):130–133PubMedGoogle Scholar
  13. Fao Plant Protection Bulletin (1971) Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides: tentative methods for larvae of cattle tick Boophilus spp. FAO method n7 19:15–18Google Scholar
  14. Furlong J, Prata MCA, Martins JR (2007) O carrapato dos bovinos e a resistência: temos o que comemorar? A Hora Veterinária 159:26–32Google Scholar
  15. Garcia MV, Matias J, Barros JC, Lima DP, Lopes RS, Andreotti R (2012) Chemical identification of Tagetes minuta Linnaeus (Asteraceae) essential oil and its acaricidal effect on ticks. Rev Bras Parasitol Vet 21(4):405–411PubMedCrossRefGoogle Scholar
  16. Gupta A, Kaushik CP, Kaushik A (2000) Degradation of hexacholorocyclohexane (HCH; α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biol Biochem 32:1803–1805CrossRefGoogle Scholar
  17. Hernández LE, Parra DG,Marin AC (1987) Accion repelente y acaricida del Melinis minutiflora sobre el Boophilus microplus. Colomb Cienc Quim Farm 16:17–21Google Scholar
  18. Ismail MH, Chitapa K, Solomon G (2002) Toxic effect of Ethiopian neem oil on larvae of cattle tick Rhipicephalus pulchellus Gerstaeker. Kasetsart J (Nat Sci) 36:18–22Google Scholar
  19. Kadir HA, Zakaria MB, Kechil AA, Azirun MS (1989) Toxicity and electrophysiological effects of Spilanthes acmella Murr extracts on Periplaneta americana L. Pestic Sci 25(4):329–335CrossRefGoogle Scholar
  20. Leite RC (1988) Boophilus microplus (Canestrini,1887): susceptibilidade, uso atual e retrospectivo de carrapaticidas em propriedades das regiões fisiográficas da baixada do Grande Rio e Rio de Janeiro: Uma abordagem epidemiológica. 1988. 122p. Tese (Doutorado em Parasitologia Veterinaria) - Universidade Federal Rural do Rio de Janeiro, ItaguaíGoogle Scholar
  21. Lima AS, Sousa Filho JGN, Pereira SG, Guillon GMSP, Santos LS, Costa Júnior LM (2014) Acaricide activity of different extracts from Piper tuberculatum fruits against Rhipicephalus microplus. Parasitol Res 113(1):107–112CrossRefGoogle Scholar
  22. Mendes MC, Lima CK, Nogueira AH, Yoshihara E, Chiebao DP, Gabriel FHL, Ueno TEH, Namindome A, Klafke GM (2011) Resistance to cypermethrin, deltamethrin and chlorpyriphos in populations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from small farms of the State of São Paulo, Brazil. Vet Parasitol 178:383–388PubMedCrossRefGoogle Scholar
  23. Molinatorres J, Salgado-Garciglia R, Ramirez-Chavez E, Del-Rio RM (1996) Purely olefinic alkamides in Heliopsis longipes and Acmella (Spilanthes) oppositifolia. Biochem Syst Ecol 24(1):43–47CrossRefGoogle Scholar
  24. Oliver JRJH (1989) Biology and systematics of ticks (Acari:Ixodida). Ann Rev Ecol Syst 20:397–430Google Scholar
  25. Oya T, Tsukada H (2002) Plant oils as insecticides. Natural Products Co. Japan. JP Patent 2002363012. Dec. 18Google Scholar
  26. Pandey V, Agrawal V (2009) Efficient micropropagation protocol of Spilanthes acmella L. possessing strong antimalarial activity. In Vitro Cell Dev Biol-Plant 45:491–499CrossRefGoogle Scholar
  27. Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong insecticidal activity of three species of Spilanthes (Akarkara) against Malaria (Anopheles stephensi liston, Anopheles culicifacies, species C) and Filaria Vector (Culex quinquefasciatus say). Parasitol Res 102:171–174PubMedCrossRefGoogle Scholar
  28. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2013) High therapeutic potential of Spilanthes acmella: a review. EXCLI Journal 12:291–312Google Scholar
  29. Ramsewak RS, Erickson AJ, Nair MG (1999) Bioactive N-isobutylamides from the flower buds of Spilanthes acmella. Phytochemistry 51:729–732PubMedCrossRefGoogle Scholar
  30. Rebello FK, Homma AK (2005) O uso da terra na Amazônia: uma proposta para reduzir desmatamentos e queimadas. Revista Amazônia Ciência e Desenvolvimento 1(1):199–236Google Scholar
  31. Ribeiro VLS, Avancini C, Gonçalves K, Toigo E, Von Poser G (2008) Acaricidal activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Vet Parasitol 151:351–354PubMedCrossRefGoogle Scholar
  32. Roulston WJ, Stone BR, Wilson JT, White LI (1968) Chemical control of an organophosphorus and carbamate resistant strain Boophilus microplus (Canestrini, 1887), Queensland. Bull Ent Res 58(2):379–391CrossRefGoogle Scholar
  33. Saraf VK, Dixit VK (2002) Spilanthes acmella Murr.: study on its extract spilanthol as larvicidal compound. Asian J Exp Sci 16:9–19Google Scholar
  34. Sharma S, Shahzad A, Shahid M, Jahan N (2012) An efficient in vitro production of shoots from shoot tips and antifungal activity of Spilanthes acmella (L.) Murr. Int J Plant Dev Biol 6:40–45Google Scholar
  35. Singh M, Chaturvedi R (2012a) Evaluation of nutrient uptake and physical parameters on cell biomass growth and production of spilanthol in suspension cultures of Spilanthes acmella Murr. Bioprocess Biosyst Eng 35:943–951PubMedCrossRefGoogle Scholar
  36. Singh M, Chaturvedi R (2012b) Screening and quantification of an antiseptic alkylamide, spilanthol from in vitro cell and tissue cultures of Spilanthes acmella Murr. Ind Crop Prod 36:321–328CrossRefGoogle Scholar
  37. Spiegeleer B, Boonen J, Malysheva SV, Mavungu JD, De Saeger S, Roche N, Blondeel P, Taevernier L, Veryser L (2013) Skin penetration enhancing properties of the plant N-alkylamide spilanthol. J Ethnopharmacol 21 148(1):117–125. doi: 10.1016/j.jep.2013.03.076, Epub 2013 Apr 9CrossRefGoogle Scholar
  38. Stone BF, Haydock KP (1962) A method for measuring the acaride-susceptibility of the cattle tick Boophilus microplus (Canestrini). Bull Entomol Res 53:563–578CrossRefGoogle Scholar
  39. Torres JM, Chavez AG (2001) Alcamidas em plantas: distribucion e importância. Avance y Perspectiva 20:377–387Google Scholar
  40. Vendramini MC, Mathias MI, De Faria AU, Furquim KC, De Souza LP, Bechara GH, Roma GC (2012a) Action of andiroba oil (Carapa guianensis) on Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged females: morphophysiological evaluation of reproductive system. Microsc Res Techniq 75:1745–1754CrossRefGoogle Scholar
  41. Vendramini MC, Camargo-Mathias MI, de Faria AU, Bechara GH, de Oliveira PR, Roma GC (2012b) Cytotoxic effects of andiroba oil (Carapa guianensis) in reproductive system of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged females. Parasitol Res 111(5):1885–1894. doi: 10.1007/s00436-012-3031-6, Epub 2012 Jul 14PubMedCrossRefGoogle Scholar
  42. Viegas Junior C (2003) Terpenos com atividade inseticida: uma alternativa para o controle químico de insetos. Quim Nova 26:90–400CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. N. C. Castro
    • 1
  • D. F. Lima
    • 2
  • L. C. Vasconcelos
    • 2
  • J. R. S. A. Leite
    • 3
  • R. C. Santos
    • 3
  • A. A. Paz Neto
    • 4
  • L. M. Costa-Júnior
    • 5
  1. 1.Embrapa Meio-NorteParnaíbaBrazil
  2. 2.Anidro do Brasil Extrações S.A.ParnaíbaBrazil
  3. 3.Universidade Federal do PiauíParnaíbaBrazil
  4. 4.Universidade Estadual do PiauíParnaíbaBrazil
  5. 5.Universidade Federal do MaranhãoChapadinhaBrazil

Personalised recommendations