Advertisement

Parasitology Research

, Volume 113, Issue 8, pp 2933–2940 | Cite as

Anti-Trichomonas vaginalis activity from triterpenoid derivatives

  • Adrine Maria Innocente
  • Patrícia de Brum Vieira
  • Amanda Piccoli Frasson
  • Bruna Bento Casanova
  • Grace Gosmann
  • Simone Cristina Baggio Gnoatto
  • Tiana Tasca
Original Paper

Abstract

Trichomonas vaginalis is a flagellated parasite that causes trichomonosis, the most common non-viral sexually transmitted disease (STD) in the world. Worryingly, trichomonosis is associated to increased transmission of HIV. Due to high frequency of the infection during pregnancy and the development of metronidazole-resistant isolates, therapeutic alternatives to 5-nitroimidazole are being searched. Triterpenes are natural products presenting several biological activities such as anti-protozoal activity. The aim of this study was to evaluate the in vitro anti-T. vaginalis activity from betulinic and ursolic acids, as well as semisynthetic derivatives obtained. Compounds obtained from betulinic acid presented better activity than those from ursolic acid. Piperazine derivatived from betulinic acid presented minimum inhibitory concentration (MIC) value of 91.2 μM, and the kinetic growth curve performed with parasites treated with this most active compound revealed complete inhibition of trophozoite proliferation at 2 h of incubation and total abolition of trophozoite growth in 24 h, revealing that the piperazine derivative is an efficient trichomonacidal molecule. The same compound promoted total erythrocyte lysis and lactate dehydrogenase (LDH) liberation of 83 and 100 % (at 45.6 and 91.2 μM, respectively), indicating parasite membrane damage. The piperazine derivative demonstrated cytotoxic effect against the HMVII and HeLa cell lineages at the MIC value. This is the first report of semisynthetic triterpenoid derivatives with anti-T. vaginalis activity, revealing the high potential of these compounds as trichomonacidal agents.

Keywords

Triterpenes Anti-Trichomonas vaginalis activity Ursolic acid Betulinic acid Semisynthetic derivatives 

Notes

Acknowledgments

This study was supported by grant from NANOBIOTEC-Brasil (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES) and by grant and financial support from INCT-IF. We thank the Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF/UFRGS). T.T. thanks CNPq for researcher fellowship and for financial support (grants 475315/2011-1 and 474930/2012-2).

References

  1. Adebajo AC, Ayoola OF, Iwalewa EO, Akindahunsi AA, Omisore NO, Adewunmi CO, Adenowo TK (2006) Anti-trichomonal biochemical and toxicological activities of methanolic extract and some carbazole alkaloids from the leaves of Murraya koenigii growing in Nigeria. Phytomedicine 4:246–254CrossRefGoogle Scholar
  2. Arthan D, Sithiprom S, Thima K, Limmatvatirat C, Chavalitshewinkoon-Petmitr P, Svasti J (2008) Inhibitory effects of Thai plants beta-glycosides on Trichomonas vaginalis. Parasitol Res 103:443–448PubMedCrossRefGoogle Scholar
  3. Bache M, Zschornak MP, Passin S, Keßler J, Wichmann H, Kappler M, Paschke R, Kalunerović GN, Kommera H, Taubert H, Vordermark D (2011) Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions. Radiat Oncol 6:111–114PubMedCentralPubMedCrossRefGoogle Scholar
  4. Basiglio CL, Sánchez Pozzi EJ, Mottino AD, Roma MG (2009) Differential effects of silymarin and its active component silibinin on plasma membrane stability and hepatocellular lysis. Chem Biol Interact 179:297–303PubMedCrossRefGoogle Scholar
  5. Cotch MF, Pastore JG, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG (1997) Trichomonas vaginalis associated with low birth weight and preterm delivery. Sex Transm Dis 24:353–360PubMedCrossRefGoogle Scholar
  6. Cudmore SL, Delgaty KL, Hayward-McClelland SF, Petrin DP, Garber GE (2004) Treatment of infection caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev 17:783–793PubMedCentralPubMedCrossRefGoogle Scholar
  7. Diamond LS (1957) The establishment of various Trichomonas of animals and man in axenic cultures. J Parasitol 43:488–490PubMedCrossRefGoogle Scholar
  8. Dominguez-Carmona DB, Escalante-Erosa F, Garcia-Sosa K, Ruiz-Pinell G, Gutierrez-Yapu D, Chan-Bacab MJ, Giminez-Turba A, Pena-Rodrigues LM (2010) Antiprotozoal activity of betulinic acid derivatives. Phytomedicine 17:379–382PubMedCrossRefGoogle Scholar
  9. Ertabaklar H, Kivçak B, Mert T, Özensoy T (2009) In vitro activity of Arbustus unedo leaf extracts against Trichomonas vaginalis trophozoites. Türk Parazitol Derg 33:263–265Google Scholar
  10. Gauthier C, Legault J, Lalancette-Girard K, Mshvildadze V, Pichette A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 17:2002–2008PubMedCrossRefGoogle Scholar
  11. Giordani RB, Vieira PDB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T (2011) Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry 72:545–650CrossRefGoogle Scholar
  12. Gnoatto SCB, Dalla-Vechia L, Lencina CL, Dassonville-Klimpt A, Nascimento SD, Mossalayi D, Guillon J, Gossmann G, Sonnet P (2008a) Synthesis and preliminary evaluation of new ursolic and oleanolic acid derivatives as antileishmanial agents. J Enzyme Inhib Med Chem 23:604–610PubMedCrossRefGoogle Scholar
  13. Gnoatto SCB, Susplugas S, Dalla Vechia L, Ferreira TB, Dassonville-Klimpt A, Zimmer KR, Demailly C, Nascimento SD, Guillon J, Grellier P, Verli H, Gosmann G, Sonnet P (2008b) Pharmacomodulation on the 3-acetylursolic acid skeleton: design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl)piperazinyl]propyl}-3-O-acetylursolamide derivatives as antimalarial agents. Bioorg Med Chem 16:771–782PubMedCrossRefGoogle Scholar
  14. He W, Van Puyvelde L, Maes L, Bosselaers J, De Kimpe N (2003) Antitrichomonas in vitro activity of Cussonia holstii Engl. Nat Prod Res 17:127–133PubMedCrossRefGoogle Scholar
  15. Ibrahim AN (2014) Comparison of in vitro activity of metronidazole and garlic-based product (Tomex®) on Trichomonas vaginalis. Parasitol Res 112:2063–2067CrossRefGoogle Scholar
  16. Innocente AM, Silva GNS, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, Gosmann G, Garcia CRS, Gnoatto SCB (2012) Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules 17:12003–12014PubMedCrossRefGoogle Scholar
  17. Kondo S, Mizuki E, Akao T, Onba M (2002) Antitrichomonal strains of Bacillus thuringiensis. Parasitol Res 88:1090–1092PubMedCrossRefGoogle Scholar
  18. Lehker MW, Alderete JF (2000) Biology of trichomonosis. Curr Opin Infect Dis 13:37–45PubMedCrossRefGoogle Scholar
  19. Mason PR, Fiori PL, Cappuccinelli P, Rappelli P, Gregson S (2005) Seroepidemiology of Trichomonas vaginalis in rural women in Zimbabwe and patterns of association with HIV infection. Epidemiol Infect 133:315–323PubMedCentralPubMedCrossRefGoogle Scholar
  20. Moon T, Wilkinson JM, Cavanagh HMA (2006) Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflate. Parasitol Res 99:722–728PubMedCrossRefGoogle Scholar
  21. Oramas-Royo SM, Chavez H, Martin-Rodriguez P, Fernandez-Perez L, Ravelo AR, Estevez-Braun A (2010) Cytotoxic triterpenoids from Maytenus retusa. J Nat Prod 73:2029–2034PubMedCrossRefGoogle Scholar
  22. Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11:300–317PubMedCentralPubMedGoogle Scholar
  23. Pomel S, Biot C, Bories C, Loiseau PM (2013) Antiprotozoal activity of ferroquine. Parasitol Res 112:665–669PubMedCrossRefGoogle Scholar
  24. Poole DN, McClelland RS (2013) Global epidemiology of Trichomonas vaginalis. Sex Transm Infect 00:1–5Google Scholar
  25. Rocha LG, Almeida JRGS, Macêdo RO, Barbosa-Filho JM (2005) A review of natural products with antileishmanial activity. Phytomedicine 12:514–535PubMedCrossRefGoogle Scholar
  26. Rocha T, De Brum VP, Gnoatto SC, Tasca T, Gosmann G (2012) Anti-Trichomonas vaginalis of saponins from Quillaja, Passiflora, and Ilex species. Parasitol Res 110:2551–2556PubMedCrossRefGoogle Scholar
  27. Rocha DAS, Rosa IA, Souza W, Benchimol M (2014) Evaluation of the effect of miltefosine on Trichomonas vaginalis. Parasitol Res 113:1041–1047PubMedCrossRefGoogle Scholar
  28. Schimdt G, Narcisi E, Mosure D, Secor E, Higgins J, Moreno H (2001) Prevalence of metronidazole resistant Trichomonas vaginalis in a gynecology clinic. J Reprod Med 46:545–549Google Scholar
  29. Schwebke JR, Barrientes FJ (2006) Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother 50:4209–4210PubMedCentralPubMedCrossRefGoogle Scholar
  30. Sorvillo F, Smith L, Kerndt P, Ash L (2001) Trichomonas vaginalis, HIV, and African-Americans. Emerg Infect Dis 7:927–932PubMedCentralPubMedCrossRefGoogle Scholar
  31. Sutcliffe S, Giovannucci E, Alderete JF, Chang TH, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA (2006) Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15:939–945PubMedCrossRefGoogle Scholar
  32. Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF (2012) Trichomonosis, a common curable STI, and prostate carcinogenesis—a proposed molecular mechanism. PLoS Pathog 8:e1002801PubMedCentralPubMedCrossRefGoogle Scholar
  33. Taketa ATC, Gnoatto SCB, Gossmann G, Pires VS, Schenkel EP, Guillaume D (2004) Triterpenois from Brazilian Ilex species and their in vitro sntitripanosomal activity. J Nat Prod 67:1697–1700PubMedCrossRefGoogle Scholar
  34. Vieira PDB, Giordani RB, De Carli GA, Zuanazzi JA, Tasca T (2011) Screening and bioguided fractionation of Amaryllidaceae species with anti-Trichomonas vaginalis activity. Planta Med 77:1054–1059CrossRefGoogle Scholar
  35. Viikki M, Pukkala E, Nieminen P, Hakama M (2000) Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol 39:71–75PubMedCrossRefGoogle Scholar
  36. WHO (2012) World Health Organization—global prevalence and incidence of selected curable sexually transmitted infections 2008. WHO, Geneva SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Adrine Maria Innocente
    • 1
  • Patrícia de Brum Vieira
    • 2
  • Amanda Piccoli Frasson
    • 2
  • Bruna Bento Casanova
    • 1
  • Grace Gosmann
    • 1
  • Simone Cristina Baggio Gnoatto
    • 1
  • Tiana Tasca
    • 2
  1. 1.Laboratório de Fitoquímica, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratório de Pesquisa em Parasitologia, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations