Parasitology Research

, Volume 113, Issue 8, pp 2797–2807 | Cite as

The apicomplexan parasite Eimeria arloingi induces caprine neutrophil extracellular traps

  • Liliana M. R. SilvaEmail author
  • Tamara Muñoz Caro
  • Rüdiger Gerstberger
  • Maria J. M. Vila-Viçosa
  • Helder C. E. Cortes
  • Carlos Hermosilla
  • Anja Taubert
Original Paper


As a novel effector mechanism polymorphonuclear neutrophils (PMN) release neutrophil extracellular traps (NETs), which represent protein-labeled DNA matrices capable of extracellular trapping and killing of invasive pathogens. Here, we demonstrate for the first time NET formation performed by caprine PMN exposed to different stages (sporozoites and oocysts) of the goat apicomplexan protozoan parasite Eimeria arloingi. Scanning electron microscopy as well as fluorescence microscopy of sporozoites- and oocysts-PMN co-cultures revealed a fine network of DNA fibrils partially covering the parasites. Immunofluorescence analyses confirmed the co-localization of histones (H3), neutrophil elastase (NE), and myeloperoxidase (MPO) in extracellular traps released from caprine PMN. In addition, the enzymatic activity of NE was found significantly enhanced in sporozoite-exposed caprine PMN. The treatment of caprine NET structures with deoxyribonuclease (DNase) and the NADPH oxidase inhibitor diphenylene iodondium (DPI) significantly reduced NETosis confirming the classical characteristics of NETs. Caprine NETs efficiently trapped vital sporozoites of E. arloingi since 72 % of these stages were immobilized—but not killed—in NET structures. As a consequence, early infection rates were significantly reduced when PMN-pre-exposed sporozoites were allowed to infect adequate host cells. These findings suggest that NETs may play an important role in the early innate host response to E. arloingi infection in goats.


Eimeria arloingi Apicomplexa NETs Goats Neutrophils 



We would like to thank Gerd Magdowski (Institute of Anatomy and Cell Biology, JLU Giessen, Germany) for his excellent assistance and kind help on SEM analyses. We further acknowledge Brigitte Hofmann, Christin Ritter, and Klaus Becker for their excellent technical assistance and blood collection. TMC is a Ph.D. student of the International Giessen Graduate Centre for the Life Sciences (GGL) at the JLU Giessen, Germany and LMRS is a Ph.D. student (grant BD/72032/2010) of the Foundation for Science and Technology (FCT). This work was partially funded by FEDER Funds through the Operational Program for Competitiveness Factors—COMPETE and National Funds through FCT under the Strategic Project PEst-C/AGR/UI0115/2011.


  1. Abi Abdallah DS, Denkers EY (2012) Neutrophils cast extracellular traps in response to protozoan parasites. Front Immunol 3:382. doi: 10.3389/fimmu.2012.00382 PubMedGoogle Scholar
  2. Abi Abdallah DS, Lin C, Ball CJ, King MR, Duhamel GE, Denkers EY (2012) Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 80(2):768–777. doi: 10.1128/IAI.05730-11 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Adler H et al (1996) Differential regulation of inducible nitric oxide synthase production in bovine and caprine macrophages. J Infect Dis 173(4):971–978PubMedCrossRefGoogle Scholar
  4. Alghamdi AS, Foster DN (2005) Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol Reprod 73(6):1174–1181. doi: 10.1095/biolreprod.105.045666 PubMedCrossRefGoogle Scholar
  5. Altincicek B, Stotzel S, Wygrecka M, Preissner KT, Vilcinskas A (2008) Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol 181(4):2705–2712PubMedCrossRefGoogle Scholar
  6. Aulik NA, Hellenbrand KM, Klos H, Czuprynski CJ (2010) Mannheimia haemolytica and its leukotoxin cause neutrophil extracellular trap formation by bovine neutrophils. Infect Immun 78(11):4454–4466. doi: 10.1128/IAI.00840-10 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Baker VS et al (2008) Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malar J 7:41. doi: 10.1186/1475-2875-7-41 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermosilla C (2010) Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis. Vet Immunol Immunopathol 133(1):1–8. doi: 10.1016/j.vetimm.2009.06.012 PubMedCrossRefGoogle Scholar
  9. Bianchi M et al (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114(13):2619–2622. doi: 10.1182/blood-2009-05-221606 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bonne-Annee S et al (2014) Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis. Microbes Infect. doi: 10.1016/j.micinf.2014.02.012 PubMedGoogle Scholar
  11. Brazil JC et al (2013) alpha3/4 Fucosyltransferase 3-dependent synthesis of Sialyl Lewis A on CD44 variant containing exon 6 mediates polymorphonuclear leukocyte detachment from intestinal epithelium during transepithelial migration. J Immunol 191(9):4804–4817. doi: 10.4049/jimmunol.1301307 PubMedCrossRefGoogle Scholar
  12. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5(8):577–582. doi: 10.1038/nrmicro1710 PubMedCrossRefGoogle Scholar
  13. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198(5):773–783. doi: 10.1083/jcb.201203170 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. doi: 10.1126/science.1092385 PubMedCrossRefGoogle Scholar
  15. Brown GB, Roth JA (1991) Comparison of the response of bovine and human neutrophils to various stimuli. Vet Immunol Immunopathol 28(3–4):201–218PubMedCrossRefGoogle Scholar
  16. Bruns S et al (2010) Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 6(4):e1000873. doi: 10.1371/journal.ppat.1000873 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chow OA et al (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8(5):445–454. doi: 10.1016/j.chom.2010.10.005 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Chuah C et al (2013) Spatial and temporal transcriptomics of Schistosoma japonicum-induced hepatic granuloma formation reveals novel roles for neutrophils. J Leukoc Biol 94(2):353–365. doi: 10.1189/jlb.1212653 PubMedCrossRefGoogle Scholar
  19. Chuammitri P, Ostojic J, Andreasen CB, Redmond SB, Lamont SJ, Palic D (2009) Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol 129(1–2):126–131. doi: 10.1016/j.vetimm.2008.12.013 PubMedCrossRefGoogle Scholar
  20. Conejeros I, Patterson R, Burgos RA, Hermosilla C, Werling D (2011) Induction of reactive oxygen species in bovine neutrophils is CD11b, but not dectin-1-dependent. Vet Immunol Immunopathol 139(2–4):308–312. doi: 10.1016/j.vetimm.2010.10.021 PubMedCrossRefGoogle Scholar
  21. Conejeros I, Velasquez ZD, Carretta MD, Alarcon P, Hidalgo MA, Burgos RA (2012) 2-Aminoethoxydiphenyl borate (2-APB) reduces alkaline phosphatase release, CD63 expression, F-actin polymerization and chemotaxis without affecting the phagocytosis activity in bovine neutrophils. Vet Immunol Immunopathol 145(1–2):540–545. doi: 10.1016/j.vetimm.2011.12.006 PubMedCrossRefGoogle Scholar
  22. Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A, Brinkmann V (2009) Mouse neutrophil extracellular traps in microbial infections. J Innate Immun 1(3):181–193. doi: 10.1159/000205281 PubMedCrossRefGoogle Scholar
  23. Fuchs TA et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. doi: 10.1083/jcb.200606027 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gabriel C, McMaster WR, Girard D, Descoteaux A (2010) Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J Immunol 185(7):4319–4327. doi: 10.4049/jimmunol.1000893 PubMedCrossRefGoogle Scholar
  25. Grinberg N, Elazar S, Rosenshine I, Shpigel NY (2008) Beta-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infect Immun 76(6):2802–2807. doi: 10.1128/IAI.00051-08 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Guimarães-Costa AB et al (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106(16):6748–6753. doi: 10.1073/pnas.0900226106 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Guimarães-Costa AB, Nascimento MT, Wardini AB, Pinto-da-Silva LH, Saraiva EM (2012) ETosis: a microbicidal mechanism beyond cell death. J Parasitol Res 2012:929743. doi: 10.1155/2012/929743 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S (2005) Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol 66(11):1146–1154. doi: 10.1016/j.humimm.2005.11.003 PubMedCrossRefGoogle Scholar
  29. Hahn S, Giaglis S, Chowdhury CS, Hosli I, Hasler P (2013) Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 35(4):439–453. doi: 10.1007/s00281-013-0380-x PubMedCentralPubMedCrossRefGoogle Scholar
  30. Hellenbrand KM, Forsythe KM, Rivera-Rivas JJ, Czuprynski CJ, Aulik NA (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb Pathog 54:67–75. doi: 10.1016/j.micpath.2012.09.007 PubMedCrossRefGoogle Scholar
  31. Hermosilla C, Barbisch B, Heise A, Kowalik S, Zahner H (2002) Development of Eimeria bovis in vitro: suitability of several bovine, human and porcine endothelial cell lines, bovine fetal gastrointestinal, Madin-Darby bovine kidney (MDBK) and African green monkey kidney (VERO) cells. Parasitol Res 88(4):301–307PubMedCrossRefGoogle Scholar
  32. Hermosilla C, Stamm I, Taubert A, Lutz K, Zahner H, Menge C (2008) Fluorescent Eimeria bovis sporozoites and meront stages in vitro: a helpful tool to study parasite-host cell interactions. Parasitol Res 102(4):777–786. doi: 10.1007/s00436-007-0849-4 PubMedCrossRefGoogle Scholar
  33. Hermosilla C, Caro TM, Silva LM, Ruiz A, Taubert A (2014) The intriguing host innate immune response: novel anti-parasitic defence by neutrophil extracellular traps. Parasitology 1–10 doi: 10.1017/S0031182014000316
  34. Hosseinzadeh A, Messer PK, Urban CF (2012) Stable redox-cycling nitroxide tempol inhibits NET formation. Front Immunol 3:391. doi: 10.3389/fimmu.2012.00391 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Jackson AR (1964) The isolation of viable coccidial sporozoites. Parasitology 54:87–93PubMedCrossRefGoogle Scholar
  36. Jenne CN et al (2013) Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13(2):169–180. doi: 10.1016/j.chom.2013.01.005 PubMedCrossRefGoogle Scholar
  37. Martinelli S et al (2004) Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem 279(42):44123–44132. doi: 10.1074/jbc.M405883200 PubMedCrossRefGoogle Scholar
  38. Mehlhorn H, Armstrong PM (2001) Encyclopedic reference of parasitology: biology, structure, function. SpringerGoogle Scholar
  39. Muñoz Caro T, Hermosilla C, Silva LM, Cortes H, Taubert A (2014) Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnoiti. PLoS One 9(3):e91415. doi: 10.1371/journal.pone.0091415 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ng TH, Chang SH, Wu MH, Wang HC (2013) Shrimp hemocytes release extracellular traps that kill bacteria. Dev Comp Immunol 41(4):644–651. doi: 10.1016/j.dci.2013.06.014 PubMedCrossRefGoogle Scholar
  41. Palic D, Ostojic J, Andreasen CB, Roth JA (2007) Fish cast NETs: neutrophil extracellular traps are released from fish neutrophils. Dev Comp Immunol 31(8):805–816. doi: 10.1016/j.dci.2006.11.010 PubMedCrossRefGoogle Scholar
  42. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691. doi: 10.1083/jcb.201006052 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Ramos-Kichik V et al (2009) Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis 89(1):29–37. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  44. Ruiz A et al (2006) Influence of climatic and management factors on Eimeria infections in goats from semi-arid zones. J Vet Med B Infect Dis Vet Public Health 53(8):399–402. doi: 10.1111/j.1439-0450.2006.00985.x PubMedCrossRefGoogle Scholar
  45. Sahoo G, More T, Singh VK (2000) Evaluation of oxygen-dependent immunodefences of the polymorphonuclear cells of some tropical ruminants. Vet Res Commun 24(8):505–515PubMedCrossRefGoogle Scholar
  46. Seper A et al (2013) Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog 9(9):e1003614. doi: 10.1371/journal.ppat.1003614 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Soe AK, Pomroy WE (1992) New species of Eimeria (Apicomplexa: Eimeriidae) from the domesticated goat Capra hircus in New Zealand. Syst Parasitol 23:195–202CrossRefGoogle Scholar
  48. Sumagin R, Robin AZ, Nusrat A, Parkos CA (2013) Transmigrated neutrophils in the intestinal lumen engage ICAM-1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol. doi: 10.1038/mi.2013.106 PubMedGoogle Scholar
  49. Szabady RL, McCormick BA (2013) Control of neutrophil inflammation at mucosal surfaces by secreted epithelial products. Front Immunol 4:220. doi: 10.3389/fimmu.2013.00220 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104. doi: 10.1038/nrm1019 PubMedCrossRefGoogle Scholar
  51. Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8(4):668–676. doi: 10.1111/j.1462-5822.2005.00659.x PubMedCrossRefGoogle Scholar
  52. Wardini AB et al (2010) Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol 91(Pt 1):259–264. doi: 10.1099/vir.0.014613-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Liliana M. R. Silva
    • 1
    • 2
    Email author
  • Tamara Muñoz Caro
    • 2
  • Rüdiger Gerstberger
    • 3
  • Maria J. M. Vila-Viçosa
    • 1
  • Helder C. E. Cortes
    • 1
  • Carlos Hermosilla
    • 2
  • Anja Taubert
    • 2
  1. 1.ICAAM—Instituto Ciências Agrárias e Ambientais MediterrânicasIIFA/Universidade de ÉvoraÉvoraPortugal
  2. 2.Institute of Parasitology, BFSJustus Liebig University GiessenGiessenGermany
  3. 3.Institute of PhysiologyJustus Liebig University GiessenGiessenGermany

Personalised recommendations