Parasitology Research

, Volume 113, Issue 7, pp 2407–2414 | Cite as

Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms

  • Patrick Scheid


In addition to their role as parasites, free-living amoebae (FLA) can act as hosts of and vehicles for phylogentically diverse microorganisms while some of them replicate intracellularly. These microorganisms are adapted to the intracellular conditions in the amoeba, find suitable conditions and protection from negative environmental influences and take advantage of the dispersal in the environment by their amoebic host. It is expedient to call these organisms “endocytobionts”, at least during the initial steps of any studies. By doing so, it is not necessary to go into potential characteristics of these relationships such as parasitism, phoresy, zoochory, or mutualism at an early stage of study. Among those organisms resisting the lysis within their amoebic host, there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals. FLA-endocytobiont relationships are not only important for the tenacity of the involved microorganisms. Especially if FLA are present in biofilms and there are close ties with many other microorganisms, the odds are for some of these microorganisms to develop human pathogenic properties. Here, the amoebic passage seems to be a prerequisite for the development of virulence factors and it may have an impact on evolutionary processes.


Endocytobionts Vectors Virulence development Trojan horses Free-living amoeba Hosts 



The author would like to thank Dr. David Lam (MD, MPH, Shaman Medical Consulting) for review and English-language editing of the article.


  1. Abd H (2006) Interaction between waterborne pathogenic bacteria and Acanthamoeba castellanii. Dissertation; Medical university Stockholm; Karolinska InstituteGoogle Scholar
  2. Adeleke A, Fields B, Benson R, Daneshvar M, Pruckler J, Ratcliff R, Harrison T, Weyant R, Birtles R, Raoult D, Halablab M (2001) Legionella drozanskii sp. nov., Legionella rowbothamii sp. nov. and Legionella fallonii sp. nov.: three unusual new Legionella species. Int J Syst Evol Microbiol 51:1151–1160PubMedCrossRefGoogle Scholar
  3. Akya A, Pointon A, Thomas C (2009) Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitol Res 105:1375–1383PubMedCrossRefGoogle Scholar
  4. Alsam S, Khan N (2009) Methicillin resistant Staphylococcus aureus interactions with Acanthamoeba; abstract booklet Free Living Amoebae (FLAM) meeting, TeneriffaGoogle Scholar
  5. Amann R, Springer N, Schönhuber W, Ludwig W, Schmid E, Müller K-D, Michel R (1997) Obligate intracellular bacterial parasites of Acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63:115–121PubMedCentralPubMedGoogle Scholar
  6. Arslan D, Legendre M, Seltzer V, Abergel C, Claverie J (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A 108:17486–17491PubMedCentralPubMedCrossRefGoogle Scholar
  7. Barker J, Lambert P, Brown M (1992) Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila. Infect Immun 61:3503–3510Google Scholar
  8. Barker J, Humphrey T, Brown M (1999) Survival of Escherichia coli O157 in a soil protozoan: implications for disease. FEMS Microbiol Lett 173:291–295PubMedCrossRefGoogle Scholar
  9. Borde J, Helwig P, Hauschild O (2013) Gelenkprothesen-Infektionen. Krankenhaushygiene up2date 8:89–97CrossRefGoogle Scholar
  10. Boulanger C, Edelstein P (1995) Precision and accuracy of recovery of Legionella pneumophila from seeded tap water by filtration and centrifugation. Appl Environ Microbiol 61:1805–1809PubMedCentralPubMedGoogle Scholar
  11. Boyer L, Yutin N, Pagnier I, Barassi L, Fournous G, Espinosa L, Robert C, Azza S, Sun S, Rossmann M, Suzan-Monti M, La Scola B, Koonin E, Raoult D (2009) Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci U S A 106:21848–21853PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cirillo J, Falkow S, Tompkins L, Bermudez L (1997) Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun 65:3759–3767PubMedCentralPubMedGoogle Scholar
  13. Collingro A, Poppert S, Heinz E, Schmitz-Esser S, Essig A, Schweikert M, Wagner M, Horn M (2005) Recovery of an environmental Chlamydia strain from activated sludge by cocultivation with Acanthamoeba sp. Microbiology 151:301–309PubMedCrossRefGoogle Scholar
  14. Colson P, Pagnier I, Yoosuf N, Fournous G, La Scola B, Raoult D (2013) “Marseilleviridae”, a new family of giant viruses infecting amoebae. Arch Virol 158:915–920PubMedCrossRefGoogle Scholar
  15. Corsaro D, Müller K-D, Michel R (2013) Molecular characterization and ultrastructure of a new amoeba endoparasite belonging to the Stenotrophomonas maltophilia complex. Exp Parasitol 133:383–390PubMedCrossRefGoogle Scholar
  16. Dey R, Hoffmann P, Glomski J (2012) Germination and amplification of anthrax spores by soil-dwelling amoebas. Appl Environ Microbiol 78:8075–8081PubMedCentralPubMedCrossRefGoogle Scholar
  17. Drancourt M, Akedambi T, Raoult D (2007) Interactions between Mycobacterium xenopi, amoeba and human cells. J Hosp Infect 65:138–142PubMedCrossRefGoogle Scholar
  18. Drozanski W (1956) Fatal bacterial infection in soil amoebae. Acta Microbiol Pol 5:315–317PubMedGoogle Scholar
  19. Drozanski W (1991) Sarcobium lyticum gen. nov., sp. nov., an obligate intracellular bacterial parasite of small free-living amoebae. Int J Syst Bacteriol 41:82–87CrossRefGoogle Scholar
  20. English J, Parry J, Pickup R (2002) The potential for interactions between protozoa and coliform bacteria in biofilms. Conference booklet BSSP conference; LondonGoogle Scholar
  21. Essig A, Heinemann M, Simnacher U, Marre R (1997) Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl Environ Microbiol 63:1396–1399PubMedCentralPubMedGoogle Scholar
  22. Everett K, Bush R, Anderssen A (1999) Embedded description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440PubMedCrossRefGoogle Scholar
  23. Flemming H (1994) Biofilme, Biofouling und mikrobielle Materialschädigung. Stuttgarter Siedlungswasserwirtschaftliche Berichte 129; Oldenburg Verlag; MünchenGoogle Scholar
  24. Fritsche T, Sobek D, Gautom R (1998) Enhancement of in vitro cytopathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts. FEMS Microbiol Lett 166:231–236PubMedCrossRefGoogle Scholar
  25. Gomez-Couso H, Paniagua-Crespo E, Ares-Mazas E (2007) Acanthamoeba as temporal vehicle of Cryptosporidium. Parasitol Res 100:1151–1154PubMedCrossRefGoogle Scholar
  26. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gustafsson K (1989) Growth and survival of four strains of Francisella tularensis in a rich medium preconditioned with Acanthamoeba palestinensis. Can J Microbiol 35:1100–1104PubMedCrossRefGoogle Scholar
  28. Hägele S, Köhler R, Merkert H, Schleicher M, Hacker J, Steinert M (2000) Dictyostelium dicoideum: a new host model system for intracellular pathogens of the genus Legionella. Cell Microbiol 2:165–171PubMedCrossRefGoogle Scholar
  29. Heinz E, Kolarov J, Kästner C, Toenshoff E, Wagner M, Horn M (2007) An Acanthamoeba sp. containing two phylogenetically different bacterial endosymbionts. Environ Microbiol 9:1604–1609PubMedCentralPubMedCrossRefGoogle Scholar
  30. Henning K, Zöller L, Hauröder B, Hotzel H, Michel R (2007) Hartmannella vermiformis (Hartmannellidae) harboured a hidden Chlamydia-like endosymbiont. Endocytobio Cell Res 18:1–10Google Scholar
  31. Hoffmann R, Michel R (2001) Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Environ Health 203:215–219PubMedCrossRefGoogle Scholar
  32. Hoffmann R, Michel R, Müller K-D, Schmid E (1998) Archaea-like endocytobiotic organisms isolated from Acanthamoeba sp. (Gr II). Endo Cell Res 12:185–188Google Scholar
  33. Hookey J, Saunders N, Fry N, Birtles R, Harrison T (1996) Phylogeny of Legionellaceae based on small-subunit ribosomal DNA sequences and proposal of Legionella lytica comb. nov. for Legionella-like amoebal pathogens. Int J Syst Bacteriol 46:526–531CrossRefGoogle Scholar
  34. Horn M, Fritsche T, Gautom R, Schleifer K, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol 1:357–367PubMedCrossRefGoogle Scholar
  35. Horn M, Wagner M, Müller K-D, Schmid E, Fritsche T, Schleifer K-H, Michel R (2000) Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146:1231–1239PubMedGoogle Scholar
  36. Horn M, Harzenetter M, Linner T, Schmid E, Müller K-D, Michel R, Wagner M (2001) Members of the Cytophaga-Flavobacterium-Bacteroides phylum as intracellular bacteria of acanthamoebae: proposal of Candidatus Amoebophilus asiaticus. Environ Microbiol 3:440–449PubMedCrossRefGoogle Scholar
  37. Horn M, Fritsche T, Linner T, Gautom R, Harznetter M, Wagner M (2002) Obligate bacterial endosymbionts of Acantamoeba spp. related to the beta-Proteobacteria: proposal of candidatus Procabacter acanthamoebae gen. nov., sp. nov. Int J Syst Evol Microbiol 52:599–605PubMedGoogle Scholar
  38. Jadin J, Francois J, Bisoux M, Languillon J, Moris R (1968) Dévelopment intranucléaire de Mycobacterium leprae dans les cellules histiocytaires chez l’animal. Bull Acad Nat Med 152:7–8Google Scholar
  39. Kahane S, Dvoskin B, Mathias M, Friedman M (2001) Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl Environ Microbiol 67:4789–4795PubMedCentralPubMedCrossRefGoogle Scholar
  40. Khan N (2009) Acanthamoeba, biology and pathogenesis. Caister Academic Press, NorfolkGoogle Scholar
  41. Khan N, Panjwani N (2000) Pathogenesis of Acanthamoeba infections; conference booklet VIII European Multicolloquium of Parasitology; Poznan, PolandGoogle Scholar
  42. King C, Shotts E, Wooley R, Porter K (1988) Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl Environ Microbiol 54:3023–3033PubMedCentralPubMedGoogle Scholar
  43. Kleinig H, Sitte P (1984) Zellbiologie. Gustav Fischer, StuttgartGoogle Scholar
  44. Krishna-Prasad B, Gupta S (1978) Preliminary report on engulfment and retention of mycobacteria by trophozoites of axenically grown Acanthamoeba castellanii Douglas. Curr Sci 47:245–247Google Scholar
  45. Kurek R, Scheid P, Michel R (2010) Darstellung von pilzartigen Endoparasiten bei freilebenden Amöben nach spezifischer Fluoreszenzanfärbung. Mikrokosmos 99(6):327–330Google Scholar
  46. La Scola B, Raoult D (1999) Afipia felis in hospital water supply in association with free-living amoebae. Lancet 353:1330PubMedCrossRefGoogle Scholar
  47. La Scola B, Raoult D (2001) Survival of Coxiella burnetii within free-living amoeba Acanthamoeba castellanii. Clin Microbiol Infect 7:75–79PubMedCrossRefGoogle Scholar
  48. La Scola B, Audic S, Robert C, Jungjang L, De Lamballerie X, Drancourt M, Birtles R, Claverie J, Raoult D (2003) A giant virus in amoebae. Science 299:5615CrossRefGoogle Scholar
  49. Landers P, Kerr K, Rowbotham T, Tipper J, Keig P, Ingham E, Denton M (2000) Survival and growth of Burkholderia cepacia within the free-living amoeba Acanthamoeba polyphaga. Eur J Clin Microbiol Infect Dis 19:121–123PubMedCrossRefGoogle Scholar
  50. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Coute Y, Rivkina E, Abergel C, Claverie J-P (2014) Thirty-thousand-year-old distinct relative of ginat icosahedral DNA viruses with a pandoravirus morphology. PNAS 2014: published ahead of print; March 3Google Scholar
  51. Ly T, Müller H (1990) Interactions of Listeria monocytogenes, Listeria seeligeri and Listeria innocua with protozoans. J Gen Appl Microbiol 36:143–150CrossRefGoogle Scholar
  52. Marciano-Cabral F, Cabral G (2007) The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunol Med Microbiol 51:243–259PubMedCrossRefGoogle Scholar
  53. Michel R (1997) Freilebende Amöben als Wirte und Vehikel von Mikroorganismen. Mitt Österr Ges Tropenmed Parasitol 19:11–20Google Scholar
  54. Michel R, Wylezich C (2005) Beitrag zur Biologie und Morphologie von Cochlonema euryblastum, einem endoparasitischen Pilz von Thecamoeba quadrilineata. Mikrokosmos 94:75–79Google Scholar
  55. Michel R, Hauröder-Philippczyk B, Müller K-D, Weishaar I (1994) Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite. Eur J Protistol 30:104–110CrossRefGoogle Scholar
  56. Michel R, Müller K-D, Schmid E (1995) Ehrlichia-like organismus (KSL1) observed as obligate intracellular parasites of Saccamoeba species. Endocyt Cell Res 11:69–80Google Scholar
  57. Michel R, Müller K-D, Schmid E (1998) Legionella-like slender rods multiplying within a strain of Acanthamoeba sp. isolated from drinking water. Parasitol Res 84:84–88PubMedCrossRefGoogle Scholar
  58. Michel R, Müller K-D, Hoffmann R (2001) Enlarged Chlamydia-like organisms as spontaneous infection of Acanthamoeba castellanii. Parasitol Res 87:248–251PubMedCrossRefGoogle Scholar
  59. Michel R, Steinert M, Zöller L, Hauröder B, Henning K (2004) Cocultivation of protozoa and the Chlamydia-like bacterium Waddlia chondrophila isolated from an aborted bovine foetus in Germany. Acta Protozool 43:37–42Google Scholar
  60. Michel R, Müller K-D, Zöller L, Walochnik J, Hartmann M, Schmid E (2005) Free living amoebae serve as host for the Chlamydia-like bacterium Simkania nevegensis. Acta Protozool 44:113–121Google Scholar
  61. Molmeret M, Horn M, Wagner M, Santic M, Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28PubMedCentralPubMedCrossRefGoogle Scholar
  62. Philippe N, Legendre M, Doutre G, Coute Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertraux L, Bruley C, Garin J, Claverie J, Abergel C (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–286PubMedCrossRefGoogle Scholar
  63. Rogers J, Keevil C (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58:2326–2330PubMedCentralPubMedGoogle Scholar
  64. Rowbotham T (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183PubMedCentralPubMedCrossRefGoogle Scholar
  65. Scheid P (2007) Mechanism of intrusion of a microsporidian-like organism into the nucleus of host amoebae (Vannella sp.) isolated from a keratitis patient. Parasitol Res 101:1097–1102PubMedCrossRefGoogle Scholar
  66. Scheid PL, Schwarzenberger R (2011) Free-living amoebae as vectors of Cryptosporidia. Parasitol Res 109:499–504PubMedCrossRefGoogle Scholar
  67. Scheid P, Schwarzenberger R (2012) Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitol Res. doi: 10.1007/s00436-012-2828-7 PubMedGoogle Scholar
  68. Scheid P, Pressmar S, Richard G, Zöller L, Michel R (2008) An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis. Parasitol Res 102:945–950PubMedCrossRefGoogle Scholar
  69. Scheid P, Hauröder B, Michel R (2010) Investigations of an extraordinary endocytobiont in Acanthamoeba sp.: development and replication. Parasitol Res 106:1371–1377PubMedCrossRefGoogle Scholar
  70. Schimper A (1883) Über die Entwicklung der Chlorophyllkörner und Farbkörper. Bot Z 41:102–113Google Scholar
  71. Schwemmler W (1991) Symbiogenese als Motor der Evolution. Paul Parey, BerlinGoogle Scholar
  72. Siddiqui K, Khan N (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6PubMedCentralPubMedCrossRefGoogle Scholar
  73. Snelling W, McKenna J, Lecky D, Dooley J (2005) Survival of Campylobacter jejuni in waterborne protozoa. Appl Environ Microbiol 71:5560–5571PubMedCentralPubMedCrossRefGoogle Scholar
  74. Steenbergen J, Shuman H, Casadervall A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its violence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci U S A 98:15245–15250PubMedCentralPubMedCrossRefGoogle Scholar
  75. Steinert M, Birkness K, White E, Fields B, Quinn F (1998) Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl Environ Microbiol 64:2256–2261PubMedCentralPubMedGoogle Scholar
  76. Tezcan-Merdol D, Ljungström M, Winiecka-Krusnell J, Linder E, Engstrand L, Rhen M (2004) Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes. Appl Environ Microbiol 70:3706–3714PubMedCentralPubMedCrossRefGoogle Scholar
  77. Thom S, Warhurst D, Drasar B (1992) Association of Vibrio cholerae with fresh water amoebae. J Med Microbiol 36:303–306PubMedCrossRefGoogle Scholar
  78. Thomas V, Loret J, Jousset M, Greub G (2008) Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10:2728–2745PubMedCrossRefGoogle Scholar
  79. Tomov A, Tsvetkova E, Tomova I, Michailova L, Kassovski V (1999) Persistence and multiplication of obligate anaerobe bacteria in amoebae under aerobic conditions. Anaerobe 5:19–23PubMedCrossRefGoogle Scholar
  80. Wagner Y, Noack B, Hoffmann T, Jacobs E, Lück P (2006) Periodontopathogenic bacteria multiply in the environmental amoeba Acanthamoeba castellani. Int J Hyg Environ Health 209:535–539PubMedCrossRefGoogle Scholar
  81. Walochnik J, Aspöck H (2007) Amöben: Paradebeispiele für Probleme der Phylogenetik, Klassifikation und Nomenklatur. Denisia 20:323–350Google Scholar
  82. Wieser A, Schubert S (2011) Intra-und extrazelluläre Biofilme uropathogener E. coli. Chemother J 20:181–185Google Scholar
  83. Winiecka-Krusnell J, Wreiber K, von Euler A, Engstrand L, Linder E (2002) Free-living amoebae promote growth and survival of Helicobacter pylori. Scand J Infect Dis 34:253–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Central Institute of the Bundeswehr Medical Service KoblenzKoblenzGermany

Personalised recommendations