Parasitology Research

, Volume 113, Issue 6, pp 2121–2128 | Cite as

Correlation between glucose uptake and membrane potential in Leishmania parasites isolated from DCL patients with therapeutic failure: a proof of concept

  • Maritza Padrón-Nieves
  • Claudia Machuca
  • Emilia Díaz
  • Paulo Cotrim
  • Noris Rodriguez
  • Alicia Ponte-SucreEmail author
Original Paper


Besides infection with drug-resistant parasites, therapeutic failure in leishmaniasis may be caused by altered drug pharmacokinetics, re-infection, and host immunologic compromise. Our aim has been to evaluate if relapses that occur in patients suffering from diffuse cutaneous leishmaniasis (DCL) associate with changes in the fitness of infecting organisms. Therefore, in isolates from patients suffering DCL, we correlated glucose uptake and plasma membrane potential and compared the results with those obtained from reference strains. The data demonstrate that Leishmania parasites causing DCL incorporate glucose at an efficient rate, albeit without significant changes in the plasma membrane potential as their corresponding reference strains. The isolate that did not change its accumulation rate of glucose compared to its reference strain expressed a less polarized membrane potential that was insensitive to mitochondrial inhibitors, suggesting a metabolic dysfunction that may result in glycolysis being the main source of ATP. The results constitute a proof of concept that indicates that parasites causing DCL adapted well to drug pressure and expressed an increased fitness. That is, that in Leishmania mexicana and Leishmania amazonensis, parasites isolated from DCL patients, a strong modification of the parasite physiology might occur. As consequences, the parasites adapted well to drug pressure, increased their fitness, and they had an efficient glucose uptake rate albeit not significant changes in membrane potential as their corresponding reference strains. Further validation of the concepts herein established and whether or not the third isolate corresponds with a drug-resistant phenotype need to be demonstrated at the genetic level.


Diffuse cutaneous leishmaniasis Drug resistance markers Glucose uptake Leishmania Membrane potential 



The authors are grateful to Mrs. Pilar López for her technical assistance. Likewise they are grateful for the support conferred by the Alexander von Humboldt Foundation, Germany to Alicia Ponte-Sucre. The authors are grateful to the Universidad Central de Venezuela Council for Research, grants CDCH-UCV PI-09-8717-2013/1 and PG-09-8646-2013/1. This project was approved by the Ethical Committee of the Institute of Biomedicine, Universidad Central de Venezuela.


  1. Aït-Oudhia K1, Gazanion E, Vergnes B, Oury B, Sereno D (2011) Leishmania antimony resistance: what we know what we can learn from the field. Parasitol Res 109:1225–1232PubMedCrossRefGoogle Scholar
  2. Basselin M, Robert-Gero M (1998) Alterations in membrane fluidity, lipid metabolism, mitochondrial activity, and lipophosphoglycan expression in pentamidine-resistant Leishmania. Parasitol Res 84:78–83PubMedCrossRefGoogle Scholar
  3. Basselin M, Denise H, Coombs GH, Barrett MP (2002) Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother 46:3731–3738PubMedCentralPubMedCrossRefGoogle Scholar
  4. Becker I1, Volkow P, Velasco-Castrejon O, Salaiza-Suazo N, Berzunza-Cruz M, Dominguez JS, Morales-Vargas A, Ruiz-Remigio A, Perez-Montfort R (1999) The efficacy of pentamidine combined with allopurinol and immunotherapy for the treatment of patients with diffuse cutaneous leishmaniasis. Parasitol Res 85:165–170PubMedCrossRefGoogle Scholar
  5. Bera T, Lakshman K, Ghanteswari D, Pal S, Sudhahar D, Islam MN, Bhuyan NR, Das P (2005) Characterization of the redox components of plasma membrane electron transport system from Leishmania donovani promastigotes. Biochim Biophys Acta 1725:314–326PubMedCrossRefGoogle Scholar
  6. Berg M, Vanaerschot M, Jankevics A, Cuypers B, Maes I, Mukherjee S, Khanal B, Rijal S, Roy S, Opperdoes F, Breitling R, Dujardin JC (2013) Metabolic adaptations of Leishmania donovani in relation to differentiation, drug resistance, and drug pressure. Mol Microbiol 90:428–442PubMedGoogle Scholar
  7. Biagini GA, Lloyd D, Kirk K, Edwards MR (2000) The membrane potential of Giardia intestinalis. FEMS Microbiol Lett 192:153–157PubMedCrossRefGoogle Scholar
  8. Cadek R, Chládkova K, Sigler K, Gásková D (2004) Impact of the growth phase on the activity of multidrug resistance pumps and membrane potential of S. cerevisiae: effect of pump overproduction and carbon source. Biochem Biophys Acta 1665:111–117PubMedCrossRefGoogle Scholar
  9. Coelho AC, Beverley SM, Cotrim PC (2003) Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol 130:83–90PubMedCrossRefGoogle Scholar
  10. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126PubMedCentralPubMedCrossRefGoogle Scholar
  11. de Almeida-Amaral EE, Caruso-Neves C, Pires VM, Meyer-Fernandes JR (2008) Leishmania amazonensis: characterization of a ouabain-insensitive Na+-ATPase activity. Exp Parasitol 118:165–171PubMedCrossRefGoogle Scholar
  12. de Azevedo AF1, Dutra JL, Santos ML, Santos Dde A, Alves PB, de Moura TR, de Almeida RP, Fernandes MF, Scher R, Fernandes RP (2014) Fatty acid profiles in Leishmania spp. isolates with natural resistance to nitric oxide and trivalent antimony. Parasitol Res 113:19–27PubMedCrossRefGoogle Scholar
  13. De Lima H, Borges R, Escobar J, Convit J (2010) Leishmaniasis cutánea americana en Venezuela: un análisis clínico epidemiológico a nivel nacional y por entidad federal, 1988–2007. Boletín De Malariología Y Salud Ambiental L: 283-299Google Scholar
  14. Derbyshire ET, Franssen FJ, de Vries E, Morin C, Woodrow CJ, Krishna S (2008) Identification, expression and characterization of a Babesia bovis hexose transporter. Mol Biochem Parasitol 161:124–129PubMedCentralPubMedCrossRefGoogle Scholar
  15. Felibertt P, Bermúdez R, Cervino V, Dawidowicz K, Dagger F, Proverbio T, Marín R, Benaim G (1998) Ouabain-sensitive Na+, K + -ATPase in the plasma membrane of Leishmania mexicana. Mol Biochem Parasitol 74:179–187CrossRefGoogle Scholar
  16. Glaser TA, Utz GL, Mukkada AJ (1992) The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes. Mol Biochem Parasitol 51:9–15PubMedCrossRefGoogle Scholar
  17. Goto H, Lindoso JA (2010) Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Rev Anti Infect Therap 8:419–433CrossRefGoogle Scholar
  18. Kalbácová M, Vrbacký M, Drahota Z, Melková Z (2003) Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry. Cytometry A 52:110–116PubMedCrossRefGoogle Scholar
  19. Machuca C, Rodríguez A, Herrera M, Silva S, Ponte-Sucre A (2006) Leishmania amazonensis: metabolic adaptations induced by resistance to an ABC transporter blocker. Exp Parasitol 114:1–9PubMedCrossRefGoogle Scholar
  20. Maes L, da Inocencio Luz RA, Cos P, Yardley V (2013) Classical versus novel treatment regimens. In: Ponte-Sucre A, Diaz E, Padrón-Nieves M (eds) Drug resistance in Leishmania parasites. Consequences, molecular mechanisms, and possible treatments. Springer, Vienna, pp 301–320Google Scholar
  21. Odiwuor S, Vuylsteke M, De Doncker S, Maes I, Mbuchi M, Dujardin JC, Van der Auwera G (2011) Leishmania AFLP: paving the way towards improved molecular assays and markers of diversity. Infect Genet Evol 11:960–967PubMedCrossRefGoogle Scholar
  22. Ouakad M, Vanaerschot M, Rijal S, Sundar S, Speybroeck N, Kestens L, Boel L, De Doncker S, Maes I, Decuypere S, Dujardin JC et al (2011) Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines. Parasitology 138:1392–1399PubMedCrossRefGoogle Scholar
  23. Padrón-Nieves M, Ponte-Sucre A (2013) Marcadores de resistencia en Leishmania: Susceptibilidad in vitro a drogas leishmanicidas vs. retención de calceina en aislados de pacientes venezolanos con Leishmaniasis Cutánea Difusa. Arch Ven Farmacol Terap 32: (in press)Google Scholar
  24. Ponte-Sucre A, Díaz E, Padrón-Nieves M (2013) The concept of fitness and drug resistance in Leishmania. In: Ponte-Sucre A, Diaz E, Padrón-Nieves M (eds) Drug resistance in Leishmania parasites. Consequences, molecular mechanisms, and possible treatments. Springer, Vienna, pp 431–449Google Scholar
  25. Roepe PD, Martiney JA (1999) Are ion-exchange processes central to understanding drug-resistance phenomena? Trends Pharmacol Sci 20:62–65PubMedCrossRefGoogle Scholar
  26. Seyfang A, Duszenko M (1991) Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B. Eur J Biochem 202:191–196PubMedCrossRefGoogle Scholar
  27. Teuscher A, Richterich R (1971) New Swiss guide lines for the diagnosis of diabetes mellitus. Schweiz Med Wochenschr 101:345–352PubMedGoogle Scholar
  28. Uzcategui NL, Figarella K, Camacho N, Ponte-Sucre A (2005) Substrate preferences and glucose uptake in glibenclamide-resistant Leishmania parasites. Comp Biochem Physiol C Toxicol Pharmacol 140:395–402PubMedCrossRefGoogle Scholar
  29. Van Der Heyden N, Docampo R (2002) Proton and sodium pumps regulate the plasma membrane potential of different stages of Trypanosoma cruzi. Mol Biochem Parasitol 120:127–139CrossRefGoogle Scholar
  30. Vanaerschot M, Maes I, Ouakad M, Adaui V, Maes L, De Doncker S, Rijal S, Chappuis F, Dujardin JC, Decuypere S (2010) Linking in vitro and in vivo survival of clinical Leishmania donovani strains. PLoS One 5:e12211PubMedCentralPubMedCrossRefGoogle Scholar
  31. Vanaerschot M, De Doncker S, Rijal S, Maes L, Dujardin JC, Decuypere S (2011) Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS One 6:e23120PubMedCentralPubMedCrossRefGoogle Scholar
  32. Vanaerschot M, Decuypere S, Berg M, Roy S, Dujardin JC (2013) Drug-resistant microorganisms with a higher fitness—can medicines boost pathogens? Crit Rev Microbiol 39:384–394PubMedCrossRefGoogle Scholar
  33. Vieira L, Slotki I, Cabantchik ZI (1995) Chloride conductive pathways which support electrogenic H+ pumping by Leishmania major promastigotes. J Biol Chem 270:5299–5304PubMedCrossRefGoogle Scholar
  34. Wilkes JM, Mulugeta W, Wells C, Peregrine AS (1997) Modulation of mitochondrial electrical potential: a candidate mechanism for drug resistance in African trypanosomes. Biochem J 326:755–761PubMedCentralPubMedGoogle Scholar
  35. Zerpa O, Convit J (2009) Leishmaniasis cutánea difusa en Venezuela. Gazeta Médica da Bahia 79:30–34Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maritza Padrón-Nieves
    • 1
  • Claudia Machuca
    • 1
  • Emilia Díaz
    • 1
  • Paulo Cotrim
    • 2
  • Noris Rodriguez
    • 3
  • Alicia Ponte-Sucre
    • 1
    Email author
  1. 1.Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Facultad de MedicinaUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Dpto. Moléstias Infecciosas e ParasitáriasInstituto de Medicina Tropical de São PauloSão PauloBrazil
  3. 3.Laboratorio de Ingeniería Genética, Instituto de BiomedicinaUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations