Parasitology Research

, Volume 113, Issue 5, pp 1909–1918 | Cite as

Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota

  • Daniele CorsaroEmail author
  • Julia Walochnik
  • Danielle Venditti
  • Jörg Steinmann
  • Karl-Dieter Müller
  • Rolf Michel
Original Paper


Molecular phylogenies based on the small subunit ribosomal RNA gene (SSU or 18S ribosomal DNA (rDNA)) revealed recently the existence of a relatively large and widespread group of eukaryotes, branching at the base of the fungal tree. This group, comprising almost exclusively environmental clones, includes the endoparasitic chytrid Rozella as the unique known representative. Rozella emerged as the first fungal lineage in molecular phylogenies and as the sister group of the Microsporidia. Here we report rDNA molecular phylogenetic analyses of two endonuclear parasites of free-living naked amoebae having microsporidia-like ultrastructural features but belonging to the rozellids. Similar to microsporidia, these endoparasites form unflagellated walled spores and grow inside the host cells as unwalled nonphagotrophic meronts. Our endonuclear parasites are microsporidia-like rozellids, for which we propose the name Paramicrosporidium, appearing to be the until now lacking morphological missing link between Fungi and Microsporidia. These features contrast with the recent description of the rozellids as an intermediate wall-less lineage of organisms between protists and true Fungi. We thus reconsider the rozellid clade as the most basal fungal lineage, naming it Rozellomycota.


Microsporidia Rozellomycota Paramicrosporidium Chytrids Amoebae Endoparasite 



We thank B. Hauröder and E.N. Schmid for assistance and previous electron microscopy data. This study was supported by internal fundings of each laboratory.

Supplementary material

436_2014_3838_MOESM1_ESM.tif (458 kb)
Supplementary Figure 1 a The presence of a fungal-like cell wall for KSL3, KAUN and KW19 (infecting Vannella), is indicated by the chitin/cellulose-binding dye calcofluor white (CFW), producing blue/apple green under UV. b After permeabilization of infected amoebae, fluorophore labelled molecular DNA beacons using specific oligonucleotide probes for KSL3 and eukaryote 18S rDNA were added. FISH identification of nuclear endoparasites KSL3 and KAUN is shown in red indicated by arrows (TIFF 458 kb)
436_2014_3838_MOESM2_ESM.pdf (230 kb)
Supplementary Figure 2 Maximum-Likelihood tree topology of Fungi, other opisthokonts (Animalia and Choanozoa), Apusozoa and Amoebozoa, the latter used as root. The holomycotan groups Nuclearoidea and Aphelidea are evidenced by a coloured sheet to show their putative intermediate position between the rest of Choanozoa and Rozellomycota + Fungi. Full tree topology is show for the basal opisthokont radiation, major fungal groups are collapsed. Bootstrap values are after 1000 replicates (PDF 229 kb)
436_2014_3838_MOESM3_ESM.pdf (1.3 mb)
Supplementary Figure 3 ITS2 secondary structures of the four rozellomycotans (upper side), and representatives of Chytridiomycota (Spizellomyces), Blastocladiomycota (Allomyces) and two holomycotan relatives (Amoeboaphelidium and Nuclearia) (lower side). Fungal ITS2 have 2-4 helices. Helix II had characteristic pyrimidine-pyrimidine (Y) bulge (red arrow). To note the similarity between KSL3 and WS-CM2, which share also some degree of identity in the phylogenetic hallmark 5′-side of the helix III, and differ from both the Rozella spp. Amoeboaphelidium (strain X-5) resembles chytrids but apparently lacks an Y bulge, while Nuclearia shows the most divergent structure (PDF 1365 kb)
436_2014_3838_MOESM4_ESM.xls (24 kb)
Supplementary Table 1 (XLS 24 kb)
436_2014_3838_MOESM5_ESM.xls (20 kb)
Supplementary Table 2 Length variability in ITS2 among basal holomycotan taxa (XLS 20 kb)
436_2014_3838_MOESM6_ESM.doc (30 kb)
ESM 6 (DOC 29 kb)


  1. Canning EU, Vávra J (2000) Phylum Microsporidia Balbiani, 1882. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa. Allen Press, Lawrence, pp 39–126Google Scholar
  2. Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47PubMedCentralPubMedCrossRefGoogle Scholar
  3. Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73:203–266PubMedCrossRefGoogle Scholar
  4. Cavalier-Smith T (2013) Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 49:115–178PubMedCrossRefGoogle Scholar
  5. Corradi N, Keeling PJ (2009) Microsporidia: a journey through radical taxonomical revisions. Fungal Biol Rev 23:1–8CrossRefGoogle Scholar
  6. Corsaro D, Venditti D, Padula M, Valassina M (1999) Intracellular life. Crit Rev Microbiol 25:39–79PubMedCrossRefGoogle Scholar
  7. Corsaro D, Müller K-D, Wingender J, Michel R (2013) ‘Candidatus Mesochlamydia elodeae’ (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae. Parasitol Res 112:829–838PubMedCrossRefGoogle Scholar
  8. Didier ES, Weiss LM (2011) Microsporidiosis: not just in AIDS patients. Curr Opin Infect Dis 24:490–495PubMedCentralPubMedCrossRefGoogle Scholar
  9. Foissner I, Foissner W (2005) Ciliatosporidium platyophryae nov. gen., nov. spec. (Microspora incerta sedis), a parasite of Platyophrya terricola (Ciliophora, Colpodea). Eur J Protistol 31:248–259CrossRefGoogle Scholar
  10. Fokin SI, Di Giuseppe G, Erra F, Dini F (2008) Euplotespora binucleata n. gen., n. sp. (Protozoa: Microsporidia), a parasite infecting the hypotrichous ciliate Euplotes woodruffi, with observations on microsporidian infections in Ciliophora. J Eukaryot Microbiol 55:214–228PubMedCrossRefGoogle Scholar
  11. Franzen C (2004) Microsporidia: how can they invade other cells. Trends Parasitol 20:275–279PubMedCrossRefGoogle Scholar
  12. Held AA (1981) Rozella and Rozellopsis: naked endoparasitic fungi which dress-up as their hosts. Bot Rev 47:451–515CrossRefGoogle Scholar
  13. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James TY, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  14. Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol Res 112:70–81PubMedCrossRefGoogle Scholar
  15. Hoffmann R, Michel R, Schmid EN, Müller K-D (1998) Natural infection with microsporidian organisms (KW19) in Vannella sp. (Gymnamoebia) isolated from a domestic tap-water supply. Parasitol Res 84:164–166PubMedCrossRefGoogle Scholar
  16. James TY, Berbee ML (2012) No jacket required—new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. Bioessays 34:94–102PubMedCrossRefGoogle Scholar
  17. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006a) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  18. James TY, Letcher PM, Longcore JE, Mozley-Standridge PD, Powell MJ, Griffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871PubMedCrossRefGoogle Scholar
  19. James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553PubMedCrossRefGoogle Scholar
  20. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCentralPubMedCrossRefGoogle Scholar
  21. Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011a) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203PubMedCrossRefGoogle Scholar
  22. Jones MDM, Richards TA, Hawksworth DL, Bass D (2011b) Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus 2:173–175PubMedCentralPubMedCrossRefGoogle Scholar
  23. Karpov SA, Mikhailov KV, Mirzaeva GS, Mirabdullaev IM, Mamkaeva KA, Titova NN, Aleoshin VV (2013) Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164:195–205PubMedCrossRefGoogle Scholar
  24. Koestler T, Ebersberger I (2011) Zygomycetes, Microsporidia, and the evolutionary ancestry of sex determination. Genome Biol Evol 3:186–194PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of Fungi. Protist 161:116–121PubMedCrossRefGoogle Scholar
  26. Larsson JIR, Køie M (2006) The ultrastructure and reproduction of Amphiamblys capitellides (Microspora, Metchnikovellidae), a parasite of the gregarine Ancora sagittata (Apicomplexa, Lecudinidae), with redescription of the species and comments on the taxonomy. Eur J Protistol 42:233–248PubMedCrossRefGoogle Scholar
  27. Letcher PM, Lopez S, Schmieder R, Lee PA, Behnke C, Powell MJ, McBride RC (2013) Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLoS ONE 8:e56232PubMedCentralPubMedCrossRefGoogle Scholar
  28. Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9:272PubMedCentralPubMedCrossRefGoogle Scholar
  29. López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607PubMedCrossRefGoogle Scholar
  30. Michel R, Schmid EN, Böker T, Hager DG, Müller K-D, Hoffmann R, Seitz HM (2000) Vannella sp. harboring Microsporidia-like organisms isolated from the contact lens and inflamed eye of a female keratitis patient. Parasitol Res 86:514–520PubMedCrossRefGoogle Scholar
  31. Michel R, Müller K-D, Hauröder B (2009) A novel microsporidian endoparasite replicating within the nucleus of Saccamoeba limax isolated from a pond. Endocytobios Cell Res 19:120–126Google Scholar
  32. Michel R, Müller K-D, Schmid EN, Theegarten NN, Hauröder B, Corsaro D (2012) Isolation of Thecamoeba terricola from bark of Platanus occidentalis harbouring spore-forming eukaryotic endoparasites with intranuclear development. Endocytobios Cell Res 22:37–42Google Scholar
  33. Not F, Valentin K, Romari K, Lovejoy C, Massana R, Töbe K, Vaulot D, Medlin LK (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:253–255PubMedCrossRefGoogle Scholar
  34. Poitelon J-B, Joyeux M, Welté B, Duguet J-P, Peplies J, DuBow MS (2009) Identification and phylogeny of eukaryotic 18S rDNA phylotypes detected in chlorinated finished drinking water samples from three Parisian surface water treatment plants. Lett Appl Microbiol 49:589–595PubMedCrossRefGoogle Scholar
  35. Powell MJ (1984) Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenae. Mycologia 76:1039–1048CrossRefGoogle Scholar
  36. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  37. Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet G-A, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879PubMedCrossRefGoogle Scholar
  38. Scheid P (2007) Mechanism of intrusion of a microsporidian-like organism into the nucleus of host amoebae (Vannella sp.) isolated from a keratitis patient. Parasitol Res 101:1097–1102PubMedCrossRefGoogle Scholar
  39. Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of choanozoa and the origin of animals. PLoS One 3:e2098PubMedCentralPubMedCrossRefGoogle Scholar
  40. Sokolova YY, Paskerova GG, Rotari YM, Nassonova ES, Smirnov AV (2013) Fine structure of Metchnikovella incurvata Caullery and Mesnil 1914 (Microsporidia), a hyperparasite of gregarines Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology 140:855–867PubMedCrossRefGoogle Scholar
  41. Sprague V (1977) Classification and phylogeny. In: Bulla LA, Cheng TC (eds) Comparative pathobiology, vol 2, Systematics of the Microsporidia. Plenum Press, New York, pp 1–30CrossRefGoogle Scholar
  42. Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of Animals and Fungi. Mol Biol Evol 23:93–106PubMedCrossRefGoogle Scholar
  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  44. Torres-Machorro AL, Hernández R, Cevallos AM, López-Villaseñor I (2010) Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 34:59–86PubMedCrossRefGoogle Scholar
  45. Ustinova I, Krienitz L, Huss VAR (2000) Hyaloraphidium curvatum is not a green alga, but a lower fungus; Amoebidium parasiticum is not a fungus, but a member of the DRIPs. Protist 151:253–262PubMedCrossRefGoogle Scholar
  46. Vávra J, Lukeš J (2013) Microsporidia and ‘the art of living together’. In: Rollinson D (ed) Advances in parasitology, Academic Press, vol. 82, chap. 4, pp 253-320.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniele Corsaro
    • 1
    • 2
    Email author
  • Julia Walochnik
    • 3
  • Danielle Venditti
    • 1
    • 4
  • Jörg Steinmann
    • 5
  • Karl-Dieter Müller
    • 5
  • Rolf Michel
    • 6
  1. 1.CHLAREAS—Chlamydia Research AssociationVandœuvre-lès-NancyFrance
  2. 2.Laboratory of Soil BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  3. 3.Molecular Parasitology, Institute of Specific Prophylaxis and Tropical MedicineMedical University of ViennaViennaAustria
  4. 4.Tredi Research Department, Faculty of MedicineTechnopôle de Nancy-BraboisVandœuvre-lès-NancyFrance
  5. 5.Institut of Medical MicrobiologyUniversity of Duisburg-EssenEssenGermany
  6. 6.Laboratory of Medical ParasitologyCentral Institute of the Federal Armed Forces Medical ServicesKoblenzGermany

Personalised recommendations