Advertisement

Parasitology Research

, Volume 113, Issue 3, pp 1041–1047 | Cite as

Evaluation of the effect of miltefosine on Trichomonas vaginalis

  • Débora Afonso Silva Rocha
  • Ivone de Andrade Rosa
  • Wanderley de Souza
  • Marlene BenchimolEmail author
Original Paper

Abstract

Trichomonas vaginalis causes trichomoniasis in humans, a sexually transmitted disease commonly treated with metronidazole (MTZ). MTZ is known to cause undesirable side effects, and MTZ-resistant parasites have been reported. Thus, the development of an alternative treatment is desirable. Miltefosine (MLT) is an alkylphosphocholine synthetic lipid analogue that displays antiparasitic activity against Leishmania, Trypanosoma cruzi, Entamoeba histolytica, Acanthamoeba spp., Giardia lamblia, T. vaginalis and some fungi. Moreover, it has been used for oral treatment of visceral leishmaniosis in several countries. Here, we analysed the MLT-induced antiproliferative effect on T. vaginalis as well its effect on the fine structure and viability of the parasite. We observed a dose-dependent effect with an IC50 of 14.5 and 20 μM after 24 and 48 h, respectively. Furthermore, reversibility assays demonstrated that new incubations were necessary in order to maintain the antiproliferative effect. Ultrastructural analyses demonstrated that MLT induced several alterations, including the appearance of wrinkled and rounded cells, membrane blebbing, intense vacuolization and nuclear condensation, all indicative of cell death by apoptosis. In addition, the quantitative analyses of the viability assays using combined markers of live and dead cells demonstrated that treatment with the IC50 concentration of MLT significantly reduced the number of viable parasites compared with untreated cells. Taken together, these observations suggest that MLT is a promising compound for the treatment of trichomoniasis.

Keywords

Visceral Leishmaniasis Parasite Growth Perifosine Entamoeba Histolytica Miltefosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa de Núcleos de Excelência (PRONEX), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Associação Universitária Santa Úrsula (AUSU).

Ethical standards

The experiments comply with the current laws of this country.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bertão HG, da Silva RA, Padilha RJ, de Azevedo Albuquerque MC, Rádis-Baptista G (2012) Ultrastructural analysis of miltefosine-induced surface membrane damage in adult Schistosoma mansoni BH strain worms. Parasitol Res 110:2465–2473PubMedCrossRefGoogle Scholar
  2. Blaha C, Duchêne M, Aspöck H, Walochnik J (2006) In vitro activity of hexadecylphosphocholine (miltefosine) against metronidazole-resistant and -susceptible strains of Trichomonas vaginalis. J Antimicrob Chemother 57:273–278PubMedCrossRefGoogle Scholar
  3. Cabrera-Serra MG, Lorenzo-Morales J, Romero M, Valladares B, Piñero JE (2007) In vitro activity of perifosine: a novel alkylphospholipid against the promastigote stage of Leishmania species. Parasitol Res 100:1155–1157PubMedCrossRefGoogle Scholar
  4. Clive S, Gardiner J, Leonard RC (1999) Miltefosine as a topical treatment for cutaneous metastases in breast carcinoma. Cancer Chemother Pharmacol 44:S29–S30PubMedCrossRefGoogle Scholar
  5. Cotch MF, Pastorek JG, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG (1997) Trichomonas vaginalis associated with low birth weight and preterm delivery. The vaginal infections and prematurity study group. Sex Transm Dis 24:353–360PubMedCrossRefGoogle Scholar
  6. Croft SL, Neal RA, Pendergast W, Chan JH (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 36:2633–2636PubMedCrossRefGoogle Scholar
  7. Croft SL, Snowdon D, Yardley V (1996) The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Antimicrob Chemother 38:1041–1047PubMedCrossRefGoogle Scholar
  8. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490PubMedCrossRefGoogle Scholar
  9. Edwards DI (1993) Nitroimidazole drugs—action and resistance mechanisms. I. Mechanisms of action. J Antimicrob Chemother 31:9–20PubMedCrossRefGoogle Scholar
  10. Eissa MM, Amer EI (2012) Giardia lamblia: a new target for miltefosine. Int J Parasitol 42:443–452PubMedCrossRefGoogle Scholar
  11. Eissa MM, El-Azzouni MZ, Amer EI, Baddour NM (2011a) Miltefosine, a promising novel agent for schistosomiasis mansoni. Int J Parasitol 41:235–242PubMedCrossRefGoogle Scholar
  12. Eissa MM, El Bardicy S, Tadros M (2011b) Bioactivity of miltefosine against aquatic stages of Schistosoma mansoni, Schistosoma haematobium and their snail hosts, supported by scanning electron microscopy. Parasitol Vectors 4:73CrossRefGoogle Scholar
  13. Escobar P, Matu S, Marques C, Croft SL (2002) Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop 81:151–157PubMedCrossRefGoogle Scholar
  14. Hilgard P, Klenner T, Stekar J, Unger C (1993) Alkylphosphocholines: a new class of membrane-active anticancer agents. Cancer Chemother Pharmacol 32:90–95PubMedCrossRefGoogle Scholar
  15. Jha TK, Sundar S, Thakur CP, Bachmann P, Karbwang J, Fischer C, Voss A, Berman J (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med 341:1795–1800PubMedCrossRefGoogle Scholar
  16. Johnston VJ, Mabey DC (2008) Global epidemiology and control of Trichomonas vaginalis. Curr Opin Infect Dis 21:56–64PubMedCrossRefGoogle Scholar
  17. Khademvatan S, Gharavi MJ, Rahim F, Saki J (2011) Miltefosine-induced apoptotic cell death on Leishmania major and L. tropica strains. Korean J Parasitol 49:17–23PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kuhlencord A, Maniera T, Eibl H, Unger C (1992) Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother 36:1630–1634PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kulda J, Vojtĕchovská M, Tachezy J, Demes P, Kunzová E (1982) Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis—a case report. Br J Ven Dis 58:394–399Google Scholar
  20. Kurohara ML, Kwong FK, Lebherz TB, Klaustermeyer WB (1991) Metronidazole hypersensitivity and oral desensitization. J Allergy Clin Immunol 88:279–280PubMedGoogle Scholar
  21. Lira R, Contreras LM, Rita RM, Urbina JA (2001) Mechanism of action of anti-proliferative lysophospholipid analogues against the protozoan parasite Trypanosoma cruzi: potentiation of in vitro activity by the sterol biosynthesis inhibitor ketoconazole. J Antimicrob Chemother 47:537–546PubMedCrossRefGoogle Scholar
  22. Lossick JG, Muller M, Gorrell TE (1986) In vitro drug susceptibility and doses of metronidazole required for cure in cases of refractory vaginal trichomoniasis. J Infect Dis 153:948–955PubMedCrossRefGoogle Scholar
  23. Lossick JG (1990) Treatment of sexually transmitted vaginosis/vaginitis. Rev Infect Dis Suppl 6:S665–681Google Scholar
  24. Madeiro da Costa RF, Benchimol M (2004) The effect of drugs on cell structure of Tritrichomonas foetus. Parasitol Res 92:159–170PubMedCrossRefGoogle Scholar
  25. Mariante RM, Guimarães CA, Linden R, Benchimol M (2003) Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histoch Cell Biol 120:129–141CrossRefGoogle Scholar
  26. Mariante RM, Vancini RG, Benchimol M (2006) Cell death in trichomonads: new insights. Histoch Cell Biol 125:545–556CrossRefGoogle Scholar
  27. Martin MB, Grimley JS, Lewis JC, Heath HT, Bailey BN, Kendrick H, Yardley V, Caldera A, Lira R, Urbina JA, Moreno SN, Docampo R, Croft SL, Oldfield E (2001) Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem 44:909–916PubMedCrossRefGoogle Scholar
  28. Meingassner JG, Thurner J (1979) Strain of Trichomonas vaginalis resistant to metronidazole and other 5-nitroimidazoles. Antimicrob Agents Chemother 15:254–257PubMedCentralPubMedCrossRefGoogle Scholar
  29. Meri T, Jokiranta TS, Suhonen L, Meri S (2000) Resistance of Trichomonas vaginalis to metronidazole: report of the first three cases from Finland and optimization of in vitro susceptibility testing under various oxygen concentrations. J Clin Microbiol 38:763–767PubMedCentralPubMedGoogle Scholar
  30. Muller M, Meingassner JG, Miller WA, Ledger WJ (1980) Three metronidazole-resistant strains of Trichomonas vaginalis from the United States. Am J Obstet Gynecol 138:808–812PubMedGoogle Scholar
  31. Noel JC, Fayt I, Romero Munoz MR, Simon P, Engohan-Aloghe C (2010) High prevalence of high-risk human papillomavirus infection among women with Trichomonas vaginalis infection on monolayer cytology. Arch Gynecol Obstet 282:503–505PubMedCrossRefGoogle Scholar
  32. Polat ZA, Obwaller A, Vural A, Walochnik J (2012) Efficacy of miltefosine for topical treatment of Acanthamoeba keratitis in Syrian hamsters. Parasitol Res 110:515–520PubMedCrossRefGoogle Scholar
  33. Robinson SC (1962) Trichomonal vaginitis resistant to metranidazole. Can Med As J 86:665–666Google Scholar
  34. Rosa IA, Rocha DA, de Souza W, Urbina JA, Benchimol M (2011) Ultrastructural alterations induced by Δ(24(25))-sterol methyltransferase inhibitors on Trichomonas vaginalis. FEMS Microbiol Lett 315:72–78CrossRefGoogle Scholar
  35. Santa-Rita RM, Santos Barbosa H, Meirelles MN, de Castro SL (2000) Effect of the alkyl-lysophospholipids on the proliferation and differentiation of Trypanosoma cruzi. Acta Trop 75:219–228PubMedCrossRefGoogle Scholar
  36. Santa-Rita RM, Barbosa HS, de Castro SL (2006) Ultrastructural analysis of edelfosine-treated trypomastigotes and amastigotes of Trypanosoma cruzi. Parasitol Res 100:187–190PubMedCrossRefGoogle Scholar
  37. Saraiva VB, Gibaldi D, Previato JO, Mendonça-Previato L, Bozza MT, Freire-De-Lima CG, Heise N (2002) Proinflammatory and cytotoxic effects of hexadecylphosphocholine (miltefosine) against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother 46:3472–3477PubMedCentralPubMedCrossRefGoogle Scholar
  38. Saraiva VB, Wengert M, Gomes-Quintana E, Heise N, Caruso-Neves C (2009) Na(+)-ATPase and protein kinase C are targets to 1-O-hexadecylphosphocoline (miltefosine) in Trypanosoma cruzi. Arch Biochem Biophys 481:65–71PubMedCrossRefGoogle Scholar
  39. Secor WE (2012) Trichomonas vaginalis: treatment questions and challenges. Expert Rev Anti Infect Ther 10:107–109PubMedCrossRefGoogle Scholar
  40. Seifert K, Duchêne M, Wernsdorfer WH, Kollaritsch H, Scheiner O, Wiedermann G, Hottkowitz T, Eibl H (2001) Effects of miltefosine and other alkylphosphocholines on human intestinal parasite Entamoeba histolytica. Antimicrob Agents Chemother 45:1505–1510PubMedCentralPubMedCrossRefGoogle Scholar
  41. Serrano-Martín X, Payares G, De Lucca M, Martinez JC, Mendoza-León A, Benaim G (2009) Amiodarone and miltefosine act synergistically against Leishmania mexicana and can induce parasitological cure in a murine model of cutaneous leishmaniasis. Antimicrob Agents Chemother 53:5108–5113PubMedCentralPubMedCrossRefGoogle Scholar
  42. Shakya N, Sane SA, Gupta S (2011) Antileishmanial efficacy of fluconazole and miltefosine in combination with an immunomodulator—picroliv. Parasitol Res 108:793–800PubMedCrossRefGoogle Scholar
  43. Shakya N, Sane SA, Haq W, Gupta S (2012) Augmentation of antileishmanial efficacy of miltefosine in combination with tuftsin against experimental visceral leishmaniasis. Parasitol Res 111:563–570PubMedCrossRefGoogle Scholar
  44. Smilack JD, Wilson WR, Cockerill FR III (1991) Tetracyclines, chloramphenicol, erythromycin, clindamycin, and metronidazole. Mayo Clin Proceed 66:1270–1280CrossRefGoogle Scholar
  45. Soper D (2004) Trichomoniasis: under control or undercontrolled? Am J Obstet Gynecol 190:281–290PubMedCrossRefGoogle Scholar
  46. Sorvillo F, Kerndt P (1998) Trichomonas vaginalis and amplification of HIV-1 transmission. Lancet 351:213–214PubMedCrossRefGoogle Scholar
  47. Sorvillo F, Smith L, Kerndt P, Ash L (2001) Trichomonas vaginalis, HIV and African-Americans. Emerg Infect Dis 7:927–932PubMedCrossRefGoogle Scholar
  48. Soto J, Soto P (2006) Current situation and future of anti-leishmanial therapy in Colombia. Biomedica 1:194–206Google Scholar
  49. Soto J, Arana BA, Toledo J, Rizzo N, Vega JC, Diaz A, Luz M, Gutierrez P, Arboleda M, Berman JD, Junge K, Engel J, Sindermann H (2004) Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis 38:1266–1272PubMedCrossRefGoogle Scholar
  50. Sutcliffe S, Giovannucci E, Alderete JF, Chang TH, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA (2006) Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemio Biom Prev 15:939–945Google Scholar
  51. Van Der Pol B, Kwok C, Pierre-Louis B, Rinaldi A, Salata RA, Chen PL, van de Wijgert J, Mmiro F, Mugerwa R, Chipato T, Morrison CS (2008) Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women. J Infect Dis 197:548–554CrossRefGoogle Scholar
  52. Walochnik J, Duchêne M, Seifert K, Obwaller A, Hottkowitz T, Wiedermann G, Eibl H, Aspock H (2002) Cytotoxic activities of alkylphosphocholines against clinical isolates of Acanthamoeba spp. Antimicrob Agents Chemother 46:695–701PubMedCentralPubMedCrossRefGoogle Scholar
  53. Widmer F, Wright LC, Obando D, Handke R, Ganendren R, Ellis DH, Sorrell TC (2006) Hexadecylphosphocholine (miltefosine) has broad-spectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrob Agents Chemother 50:414–421PubMedCentralPubMedCrossRefGoogle Scholar
  54. World Health Organization (WHO) (2001) Global prevalence and incidence of selected curable sexually transmitted infections. In Global Program on AIDS, Geneva, Switzerland: World Health Organization 2–27Google Scholar
  55. Zhang ZF, Begg CB (1994) Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. Int J Epidemiol 23:682–690PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Débora Afonso Silva Rocha
    • 1
    • 2
  • Ivone de Andrade Rosa
    • 1
    • 2
  • Wanderley de Souza
    • 3
    • 4
  • Marlene Benchimol
    • 1
    Email author
  1. 1.Universidade Santa ÚrsulaRio de JaneiroBrazil
  2. 2.Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Instituto Nacional de Metrologia, Qualidade e Tecnologia-InmetroDuque de CaxiasBrazil

Personalised recommendations