Advertisement

Parasitology Research

, Volume 113, Issue 3, pp 1011–1018 | Cite as

Haemoproteus infections (Haemosporida, Haemoproteidae) kill bird-biting mosquitoes

  • Gediminas Valkiūnas
  • Rita Kazlauskienė
  • Rasa Bernotienė
  • Dovilė Bukauskaitė
  • Vaidas Palinauskas
  • Tatjana A. Iezhova
Original Paper

Abstract

Haemoproteus parasites (Haemosporida, Haemoproteidae) are widespread; some species cause severe diseases in avian hosts. Heavy Haemoproteus infections are often lethal for biting midges (Ceratopogonidae), which transmit avian haemoproteids, but there is no information regarding detrimental effect on other blood-sucking insects. We examined effects of Haemoproteus tartakovskyi (lineage hSISKIN1), Haemoproteus lanii (lineages hRB1and hRBS2) and Haemoproteus balmorali (lineage hCOLL3) on the survival of Ochlerotatus cantans, a widespread Eurasian mosquito. Wild-caught females were infected by allowing them to feed on naturally infected birds with light (0.01 %) and high (3.0–9.6 %) parasitaemia. Mosquitoes fed on uninfected birds were used as controls. Both experimental and control groups were maintained under the same laboratory conditions until 20 days post-exposure (dpe). Dead insects were counted daily and used for parasitological examination and PCR-based testing. No difference was discernible in the survival rate of control mosquitoes and those fed on meal with light parasitaemia. There was a highly significant difference in the survival rate between the control group and all groups fed on meals with high parasitaemia, with the greatest mortality reported 1–3 dpe. For 4 dpe, the percentage of survived control mosquitoes (88 %) was 2.2-, 3.6- and 4-fold greater than that of groups fed on meals with high parasitaemia of H. balmorali, H. tartakovskyi and H. lanii, respectively. Numerous ookinetes were observed in the gut area and adjacent tissues located in the head, thorax and abdomen of infected insects 0.5–1 dpe. The migrating parasites damage organs throughout the entire body of mosquitoes; that is the main reason of mortality. To the end of this study, 46 % of mosquitoes survived in control group, but the survival rates of experimental mosquitoes fed on meals with high parasitaemia were between 2.6- and 5.8-fold lower. This study indicates that widespread Haemoproteus infections are markedly virulent for bird-biting mosquitoes, which rapidly die after feeding on heavily infected blood meals.

Keywords

Blood Meal Infected Mosquito Pied Flycatcher Curonian Lagoon High Parasitaemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the staff of the Biological Station ‘Rybachy’ for their assistance in the field. The director of the Biological Station Rybachy, Casimir V. Bolshakov, is acknowledged for generously providing facilities for the experimental research. The experiments described herein comply with the current laws of Lithuania and Russia. This study was funded by the European Social Fund under the Global Grant measure (VPI-3.1.-ŠMM-07-K-01-047).

References

  1. Allison FR, Desser SS, Whitten LK (1978) Further observations on the life cycle and vectors of the haemosporidian Leucocytozoon tawaki and its transmission to the Fiordland crested penguin. N Z J Zool 5:371–374. doi: 10.1080/03014223.1978.10428323 CrossRefGoogle Scholar
  2. Arai M, Billker O, Morris HR, Panico M, Delcroix M, Dixon D, Ley SV, Sinden RE (2001) Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol Biochem Parasit 116:17–24. doi: 10.1016/S0166-6851(01)00299-7 CrossRefGoogle Scholar
  3. Atkinson CT, Forrester DJ, Greiner EC (1988) Pathogenicity of Haemoproteus meleagridis (Haemosporina: Haemoproteidae) in experimentally infected domestic turkeys. J Parasitol 74:228–239PubMedCrossRefGoogle Scholar
  4. Barillas-Mury C, Wizel B, Soo Han Y (2000) Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity. Insect Biochem Mol Biol 30:429–442. doi: 10.1016/S0965-1748(00)00018-7 PubMedCrossRefGoogle Scholar
  5. Becker N, Petric D, Zgomba M, Boase C, Dahl C, Lane J, Kaiser A (2003) Mosquitoes and their control. Plenum, New YorkCrossRefGoogle Scholar
  6. Beier JC (1998) Malaria parasite development in mosquitoes. Annu Rev Entomol 43:519–543. doi: 10.1146/annurev.ento.43.1.519 PubMedCrossRefGoogle Scholar
  7. Bensch S, Stjenman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H, Torres-Pinheiro R (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc B 276:1583–1589CrossRefGoogle Scholar
  8. Bernotienė R (2012) The fauna and seasonal activity of mosquitoes (Diptera: Culicidae) in the Curonian Spit (Russia, Lithuania). Euro Mosq Bull 30:72–78Google Scholar
  9. Cannell BL, Krasnec KV, Campbell K, Jones HI, Miller RD, Stephens N (2013) The pathology and pathogenicity of a novel Haemoproteus spp. infection in wild Little Penguins (Eudyptula minor). Vet Parasitol 197:74–84. doi: 10.1016/j.vetpar.2013.04.025 PubMedCrossRefGoogle Scholar
  10. Desser SS, Yang YJ (1973) Sporogony of Leucocytozoon spp. in mammalophilic simuliids. Can J Zool 51:793PubMedCrossRefGoogle Scholar
  11. Ejiri H, Sato Y, Sawai R, Sasaki E, Matsumoto R, Ueda M, Higa Y, Tsuda Y, Omori S, Murata K, Yukawa M (2009) Prevalence of avian malaria parasite in mosquitoes collected at a zoological garden in Japan. Parasitol Res 105:629–633. doi: 10.1007/s00436-009-1434-9 PubMedCrossRefGoogle Scholar
  12. Ferguson HM, Read AF (2002) Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 18:256–261. doi: 10.1016/S1471-4922(02)02281-X PubMedCrossRefGoogle Scholar
  13. Garnham PCC (1966) Malaria parasites and other Haemosporidia. Blackwell Scientific, OxfordGoogle Scholar
  14. Glaizot O, Fumagalli L, Iritano K, Lalubin F, Van Rooyen J, Christe P (2012) High prevalence and lineage diversity of avian malaria in wild populations of great tits (Parus major) and mosquitoes (Culex pipiens). PLoS One 7:e34964. doi: 10.1371/journal.pone.0034964 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Greiner EC, Bennett GF, White EM, Coombs RF (1975) Distribution of the avian hematozoa of North America. Can J Zool 53:1762–1787PubMedCrossRefGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser (Oxf) 41:95–98Google Scholar
  17. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802PubMedCrossRefGoogle Scholar
  18. Ishtiaq F, Guillaumot L, Clegg SM, Phillimore AB, Black RA, Owens IPF, Mundy NI, Sheldon BC (2008) Avian haematozoan parasites and their associations with mosquitoes across Southwest Pacific Islands. Mol Ecol 17:4545–4555. doi: 10.1111/j.1365-294X.2008.03935.x PubMedCrossRefGoogle Scholar
  19. Jahan N, Docherty PT, Billingsley PF, Hurd H (1999) Blood digestion in the mosquito, Anopheles stephensi: the effects of Plasmodium yoelii nigeriensis on midgut enzyme activities. Parasitology 119:535–541. doi: 10.1017/S0031182099005090 PubMedCrossRefGoogle Scholar
  20. Kim KS, Tsuda Y, Sasaki T, Kobayashi M, Hirota Y (2009) Mosquito blood-meal analysis for avian malaria study in wild bird communities: laboratory verification and application to Culex sasai (Diptera: Culicidae) collected in Tokyo, Japan. Parasitol Res 105:1351–1357. doi: 10.1007/s00436-009-1568-9 PubMedCrossRefGoogle Scholar
  21. Lehane M (2005) The biology of blood-sucking insects, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Marzal A, de Lopes F, Navarro C, Møller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545PubMedCrossRefGoogle Scholar
  23. McClure HE, Poonswad P, Greiner EC, Laird M (1978) Haematozoa in the birds of Eastern and Southern Asia. Memorial University of Newfoundland, St. John'sGoogle Scholar
  24. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc Biol Sci 267:2507–2510PubMedCentralPubMedCrossRefGoogle Scholar
  25. Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RN, Valkiūnas G, Russell AF, Smith TB (2011) Nonspecific patterns of vector, host and avian malaria parasites associations in a central African rainforest. Mol Ecol 20:1049–1061. doi: 10.1111/j.1365-294X.2010.04904.x PubMedCentralPubMedCrossRefGoogle Scholar
  26. Palinauskas V, Križanauskienė A, Iezhova TA, Bolshakov CV, Jönsson J, Bensch S, Valkiūnas G (2013) A new method for isolation of purified genomic DNA from haemosporidian parasites inhabiting nucleated red blood cells. Exp Parasitol 133:275–280. doi: 10.1016/j.exppara.2012.12.003 PubMedCrossRefGoogle Scholar
  27. Peirce MA (1981) Distribution and host-parasite check-list of the haematozoa of birds in Western Europe. J Nat Hist 15:419–458CrossRefGoogle Scholar
  28. Pérez-Tris J, Hellgren O, Križanauskienė A, Waldenström J, Secondi J, Bonneaud C, Fjeldså J, Hasselquist D, Bensch S (2007) Within-host speciation of malaria parasites. PLoS One 2:e235. doi: 10.1371/journal.pone.0000235 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Santiago-Alarcon D, Palinauskas V, Schaefer HH (2012) Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev 87:928–964. doi: 10.1111/j.1469-185X.2012.00234.x PubMedCrossRefGoogle Scholar
  30. Shurulinkov P, Ilieva M (2009) Spatial and temporal differences in the blood parasite fauna of passerine birds during the spring migration in Bulgaria. Parasitol Res 104:1453–1458. doi: 10.1007/s00436-009-1349-5 PubMedCrossRefGoogle Scholar
  31. Sinden RE (1998) Gametogenesis and sexual development. In: Sherman IW (ed) Malaria: parasite biology, pathogenesis, and protection. American Society for Microbiology, Washington, D.C., pp 25–48Google Scholar
  32. Synek P, Munclinger P, Albrecht T, Votýpka J (2013) Avian haemosporidians in haematophagous insects in the Czech Republic. Parasitol Res 112:839–845. doi: 10.1007/s00436-012-3204-3 PubMedCrossRefGoogle Scholar
  33. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  34. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC, Boca RatonGoogle Scholar
  35. Valkiūnas G, Iezhova TA (2004) Detrimental effects of Haemoproteus infections on the survival of biting midge Culicoides impunctatus (Diptera: Ceratopogonidae). J Parasitol 90:194–196. doi: 10.1645/GE-3206RN PubMedCrossRefGoogle Scholar
  36. Valkiūnas G, Iezhova TA, Shapoval AP (2003) High prevalence of blood parasites in hawfinch Coccothraustes coccothraustes. J Nat Hist 37:2647–2652. doi: 10.1080/002229302100001033221 CrossRefGoogle Scholar
  37. Valkiūnas G, Kazlauskienė R, Bernotienė R, Palinauskas V, Iezhova TA (2013) Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitol Res 112:2159–2169. doi: 10.1007/s00436-013-3375-6 PubMedCrossRefGoogle Scholar
  38. Zehtindjiev P, Ivanova K, Mariaux J, Georgiev BB (2013) First data on the genetic diversity of avian haemosporidians in China: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Gansu Province. Parasitol Res 112:3509–3515. doi: 10.1007/s00436-013-3533-x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gediminas Valkiūnas
    • 1
  • Rita Kazlauskienė
    • 1
  • Rasa Bernotienė
    • 1
  • Dovilė Bukauskaitė
    • 1
  • Vaidas Palinauskas
    • 1
  • Tatjana A. Iezhova
    • 1
  1. 1.Nature Research CentreVilnius 2100Lithuania

Personalised recommendations