Parasitology Research

, Volume 113, Issue 3, pp 863–874 | Cite as

Influence of Plasmodium vivax malaria on the relations between the osmotic stability of human erythrocyte membrane and hematological and biochemical variables

  • Rita de Cássia Mascarenhas Netto
  • Camila Fabbri
  • Mariana Vaini de Freitas
  • Morun Bernardino Neto
  • Mário Silva Garrote-Filho
  • Marcus Vinícius Guimarães Lacerda
  • Emerson Silva Lima
  • Nilson Penha-Silva
Original Paper


This study evaluated the influence of infection by Plasmodium vivax on the relations between hematological and biochemical variables and the osmotic stability of the erythrocyte membrane in a Brazilian Amazon population. A total of 72 patients with P. vivax malaria were included in the study and invited to return after 14 days, post-treatment with chloroquine and primaquine, for clinical and laboratorial reevaluations. The osmotic stability of the erythrocyte membrane was analyzed by nonlinear regression of the dependency of the absorbance of hemoglobin, released with hemolysis, as a function of the salt concentration, and it was represented by the inverse of the salt concentration at the midpoint of the curve (1/H 50) and by the variation of salt concentration, which promotes lysis (dX). Bivariate and multivariate methods were used in the analysis of the results. Prior to treatment of the disease, the erythrocytes showed greater stability, probably due to the natural selection of young and also more stable erythrocytes. The bivariate analysis showed that 1/H 50 was positively correlated with red cell distribution width (RDW), urea, triglycerides, and very low-density lipoprotein (VLDL)-cholesterol, but negatively associated with albumin, HDL-cholesterol, and indirect bilirubin, while dX was negatively associated with the mean corpuscular hemoglobin concentration. These associations were confirmed by canonical correlation analysis. Stepwise multiple linear regression showed that albumin, urea, triglycerides, and VLDL-cholesterol are the variables with the highest abilities of predicting erythrocyte stability. The bivariate analysis also showed that the hematological index RDW was related to elevated levels of bilirubin and decreased levels of albumin and urea, associated with liver damage resulting from malaria.


Malaria Erythrocyte Membrane Canonical Correlation Stability Parameter Parasite Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank FAPEMIG (CDS-APQ-01862-09, CDS-APQ-02025-10, and PPM-00485-12), CAPES (PE-PNPD AUX 2718/2011), and CNPq (307705/2012-9) for the financial supports that enable the development of this study and also to Tropical Medicine Foundation Dr. Heitor Vieira Dourado, where the participants of the study were recruited.

Conflict of interest

None of the authors have financial or non-financial competing interests, as well as any other kind of interest conflict, in the work presented in this manuscript.


  1. Aikawa M (1988) Morphological changes in erythrocytes induced by malarial parasites. Biol Cell 64(2):173–181PubMedCrossRefGoogle Scholar
  2. Akanbi OM, Odaibo AB, Ademowo OG (2010) Effect of antimalarial drugs and malaria infection on oxidative stress in pregnant women. Afr J Reprod Health 14(3):209–212PubMedGoogle Scholar
  3. Alecrim MGC (2000) Clinical aspects, resistance and parasitary polymorphism of Plasmodium vivax malaria in Manaus. Brasília UniversityGoogle Scholar
  4. Attwood D (2011) Malaria in South Sudan 2: clinical features and diagnosis. Southern Sudan Med J 4(1):10–12Google Scholar
  5. Bernardino Neto M (2011) Analysis of correlations between stability of erythrocyte membrane, serum lipids and hematologic variables. Federal University of UberlandiaGoogle Scholar
  6. Bernardino Neto M et al (2013) Bivariate and multivariate analyses of the correlations between stability of the erythrocyte membrane, serum lipids and hematological variables. Biorheology. doi: 10.3233/BIR-130641
  7. Bracho C et al (2006) Caveolins and flotillin-2 are present in the blood stages of Plasmodium vivax. Parasitol Res 99(2):153–159. doi: 10.1007/s00436-006-0139-6 PubMedCrossRefGoogle Scholar
  8. Brewer GJ, Tarlov AR, Alving AS (1960) Methaemoglobin reduction test: a new, simple, in vitro test for identifying primaquine-sensitivity. Bull World Health Organ 22:633–640PubMedCentralPubMedGoogle Scholar
  9. Bruschi M, Candiano G, Santucci L, Ghiggeri GM (2013) Oxidized albumin. The long way of a protein of uncertain function. Biochim Biophys Acta 1830:5473–5479. doi: 10.1016/j.bbagen.2013.04.017 PubMedCrossRefGoogle Scholar
  10. Bunyaratvej A, Butthep P, Bunyaratvej P (1993) Cytometric analysis of blood cells from malaria-infected patients and in vitro infected blood. Cytometry 14(1):81–85. doi: 10.1002/cyto.990140114 PubMedCrossRefGoogle Scholar
  11. Carvalho BO et al (2010) On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis 202(4):638–647. doi: 10.1086/654815 PubMedCrossRefGoogle Scholar
  12. Coelho HC et al (2013) Thrombocytopenia in Plasmodium vivax malaria is related to platelets phagocytosis. PLoS One 8(5):e63410. doi: 10.1371/journal.pone.0063410 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Cooper RA (1977) Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N Engl J Med 297(7):371–377. doi: 10.1056/NEJM197708182970707 PubMedCrossRefGoogle Scholar
  14. Costa FT et al (2011) On cytoadhesion of Plasmodium vivax: raison d’etre? Mem Inst Oswaldo Cruz 106(Suppl 1):79–84PubMedGoogle Scholar
  15. Costa FT et al (2012) On the pathogenesis of Plasmodium vivax malaria: perspectives from the Brazilian field. Int J Parasitol 42(12):1099–1105. doi: 10.1016/j.ijpara.2012.08.007 PubMedCrossRefGoogle Scholar
  16. Costa-Balogh FO, Wennerstrom H, Wadso L, Sparr E (2006) How small polar molecules protect membrane systems against osmotic stress: the urea–water–phospholipid system. J Phys Chem B 110(47):23845–23852. doi: 10.1021/jp0632440 PubMedCrossRefGoogle Scholar
  17. Cunha CC, Arvelos LR, Costa JO, Penha-Silva N (2007) Effects of glycerol on the thermal dependence of the stability of human erythrocytes. J Bioenerg Biomembr 39(4):341–347. doi: 10.1007/s10863-007-9092-z PubMedCrossRefGoogle Scholar
  18. de Arvelos LR et al (2013) Bivariate and multivariate analyses of the influence of blood variables of patients submitted to Roux-en-Y gastric bypass on the stability of erythrocyte membrane against the chaotropic action of ethanol. J Membr Biol 246(3):231–242. doi: 10.1007/s00232-013-9524-0 PubMedCrossRefGoogle Scholar
  19. de Freitas MV et al (2008) Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol In Vitro 22(1):219–224. doi: 10.1016/j.tiv.2007.07.010 PubMedCrossRefGoogle Scholar
  20. de Freitas MV, de Oliveira MR, dos Santos DF, de Cassia Mascarenhas Netto R, Fenelon SB, Penha-Silva N (2010) Influence of the use of statin on the stability of erythrocyte membranes in multiple sclerosis. J Membr Biol 233(1–3):127–134. doi: 10.1007/s00232-010-9232-y PubMedCrossRefGoogle Scholar
  21. de Freitas MV et al (2013) Influence of age on the concentration of hematological and biochemical variables with the stability of erythrocyte membrane in relation to sodium dodecyl sulfate. Hematology. doi: 10.1179/1607845413Y.0000000145
  22. Dondorp AM, Kager PA, Vreeken J, White NJ (2000) Abnormal blood flow and red blood cell deformability in severe malaria. Parasitol Today 16(6):228–232PubMedCrossRefGoogle Scholar
  23. Edison M, Jeeva JB, Singh M (2011) Digital analysis of changes by Plasmodium vivax malaria in erythrocytes. Indian J Exp Biol 49(1):11–15PubMedGoogle Scholar
  24. Faucher JF, Ngou-Milama E, Missinou MA, Ngomo R, Kombila M, Kremsner PG (2002) The impact of malaria on common lipid parameters. Parasitol Res 88(12):1040–1043. doi: 10.1007/s00436-002-0712-6 PubMedCrossRefGoogle Scholar
  25. Feng Y, Yu ZW, Quinn PJ (2002) Effect of urea, dimethylurea, and tetramethylurea on the phase behavior of dioleoylphosphatidylethanolamine. Chem Phys Lipids 114(2):149–157PubMedCrossRefGoogle Scholar
  26. Fonseca LC, Correa NCR, Garrote MD, da Cunha CC, Penha-Silva N (2006) Effects of the solvent composition on the stability of proteins in aqueous solutions. Quim Nova 29(3):543–548CrossRefGoogle Scholar
  27. Fonseca LC, Arvelos LR, Netto RC, Lins AB, Garrote-Filho MS, Penha-Silva N (2010) Influence of the albumin concentration and temperature on the lysis of human erythrocytes by sodium dodecyl sulfate. J Bioenerg Biomembr 42(5):413–418. doi: 10.1007/s10863-010-9310-y PubMedCrossRefGoogle Scholar
  28. Gallin JI, Kaye D, O’Leary WM (1969) Serum lipids in infection. N Engl J Med 281(20):1081–1086. doi: 10.1056/NEJM196911132812001 PubMedCrossRefGoogle Scholar
  29. Gavino VC, Miller JS, Ikharebha SO, Milo GE, Cornwall DG (1981) Effects of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J Lipid Res 22:763–769PubMedGoogle Scholar
  30. Ghosh K, Shetty S (2008) Blood coagulation in falciparum malaria—a review. Parasitol Res 102(4):571–576. doi: 10.1007/s00436-007-0832-0 PubMedCrossRefGoogle Scholar
  31. Hair JFJ, Black WC, Babin BJ, Anderson RE (2009) Multivariate data analysis, 7th edn. Prentice Hall, Englewood CliffsGoogle Scholar
  32. Haldar K, Samuel BU, Mohandas N, Harrison T, Hiller NL (2001) Transport mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular network. Int J Parasitol 31(12):1393–1401PubMedCrossRefGoogle Scholar
  33. Haldar K, Murphy SC, Milner DA, Taylor TE (2007) Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu Rev Pathol 2:217–249. doi: 10.1146/annurev.pathol.2.010506.091913 PubMedCrossRefGoogle Scholar
  34. Hu Z et al (2013) Red blood cell distribution width is a potential prognostic index for liver disease. Clin Chem Lab Med 51:1403–1408. doi: 10.1515/cclm-2012-0704 Google Scholar
  35. Jain NC (1986) Hematology techniques. In: Jain NC (ed) Shalm’s veterinary hematology. Lea & Febiger, PhiladelphiaGoogle Scholar
  36. Katchalsky A, Kedem O, Klibansky C, Devries A (1960) Flow properties of blood and other biological systems. Pergamon, ElmsfordGoogle Scholar
  37. Kochar DK et al (2010) Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India). Platelets 21(8):623–627. doi: 10.3109/09537104.2010.505308 PubMedCrossRefGoogle Scholar
  38. Kochar DK et al (2012) Platelet count and parasite density: independent variable in Plasmodium vivax malaria. J Vector Borne Dis 49(3):191–192PubMedGoogle Scholar
  39. Koltas IS, Demirhindi H, Hazar S, Ozcan K (2007) Supportive presumptive diagnosis of Plasmodium vivax malaria. Thrombocytopenia and red cell distribution width. Saudi Med J 28(4):535–539PubMedGoogle Scholar
  40. Koynova R, Brankov J, Tenchov B (1997) Modulation of lipid phase behavior by kosmotropic and chaotropic solutes: experiment and thermodynamic theory. Eur Biophys J 25(4):261–274. doi: 10.1007/s002490050038 PubMedCrossRefGoogle Scholar
  41. Krishna AP, Chandrika, Kumar S, Acharya M, Patil SL (2009) Variation in common lipid parameters in malaria infected patients. Indian J Physiol Pharmacol 53(3):271–274PubMedGoogle Scholar
  42. Lacerda MV, Mourao MP, Coelho HC, Santos JB (2011) Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz 106(Suppl 1):52–63PubMedCrossRefGoogle Scholar
  43. Lathia TB, Joshi R (2004) Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics? Indian J Med Sci 58(6):239–244PubMedGoogle Scholar
  44. Luginbuhl A, Nikolic M, Beck HP, Wahlgren M, Lutz HU (2007) Complement factor D, albumin, and immunoglobulin G anti-band 3 protein antibodies mimic serum in promoting rosetting of malaria-infected red blood cells. Infect Immun 75(4):1771–1777. doi: 10.1128/IAI.01514-06 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Malandrino N, Wu WC, Taveira TH, Whitlatch HB, Smith RJ (2012) Association between red blood cell distribution width and macrovascular and microvascular complications in diabetes. Diabetologia 55(1):226–235. doi: 10.1007/s00125-011-2331-1 PubMedCrossRefGoogle Scholar
  46. Manjunatha M, Singh M (2000) Digital analysis of induced erythrocyte shape changes in hypercholesterolemia under in vitro conditions. Curr Sci 79:1588–1591Google Scholar
  47. Marin-Menendez A et al (2013) Rosetting in Plasmodium vivax: a cytoadhesion phenotype associated with anaemia. PLoS Negl Trop Dis 7(4):e2155. doi: 10.1371/journal.pntd.0002155 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Marks PA, Johnson AB (1958) Relationship between the age of human erythrocytes and their osmotic resistance: a basis for separating young and old erythrocytes. J Clin Invest 37(11):1542–1548. doi: 10.1172/JCI103746 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Ministry for Health B (2012) Epidemiological surveillance information system for malaria. Accessed June 2012
  50. Nilsson-Ehle I, Nilsson-Ehle P (1990) Changes in plasma lipoproteins in acute malaria. J Intern Med 227(3):151–155PubMedCrossRefGoogle Scholar
  51. Nishizaki Y et al (2012) Red blood cell distribution width as an effective tool for detecting fatal heart failure in super-elderly patients. Intern Med 51(17):2271–2276PubMedCrossRefGoogle Scholar
  52. Ogbodo SO, Okeke A, Obu HA, Shu EN, Chukwurah E (2010) Nutritional status of parasitemic children from malaria endemic rural communities in eastern Nigeria. Curr Pediatr Res 14(2):131–135Google Scholar
  53. Parola P, Gazin P, Patella F, Badiaga S, Delmont J, Brouqui P (2004) Hypertriglyceridemia as an indicator of the severity of falciparum malaria in returned travelers: a clinical retrospective study. Parasitol Res 92(6):464–466. doi: 10.1007/s00436-003-1012-5 PubMedCrossRefGoogle Scholar
  54. Patel H, Raval G, Nazari M, Heerklotz H (2010a) Effects of glycerol and urea on micellization, membrane partitioning and solubilization by a non-ionic surfactant. Biophys Chem 150(1–3):119–128. doi: 10.1016/j.bpc.2010.03.015 PubMedCrossRefGoogle Scholar
  55. Patel KV et al (2010b) Red cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci 65(3):258–265. doi: 10.1093/gerona/glp163 PubMedCrossRefGoogle Scholar
  56. Penha-Silva N et al (2007) Influence of age on the stability of human erythrocyte membranes. Mech Ageing Dev 128(7–8):444–449. doi: 10.1016/j.mad.2007.06.007 PubMedCrossRefGoogle Scholar
  57. Perk K, Frei YF, Herz A (1964) Osmotic fragility of red blood cells of young and mature domestic and laboratory animals. Am J Vet Res 25:1241–1248PubMedGoogle Scholar
  58. Peters TJ (1996) All about albumin: biochemistry, genetics, and medical applications. Academic, New YorkGoogle Scholar
  59. Sabolovic D, Bouanga JC, Danis M, Mazier D, Gentilini M (1994) Alterations of uninfected red blood cells in malaria. Parasitol Res 80(1):70–73PubMedCrossRefGoogle Scholar
  60. Snounou G et al (1993) High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61:315–320PubMedCrossRefGoogle Scholar
  61. Srichaikul T, Wasanasomsithi M, Poshyachinda V, Panikbutr N, Rabieb T (1969) Ferrokinetic studies and erythropoiesis in malaria. Arch Intern Med 124(5):623–628PubMedCrossRefGoogle Scholar
  62. Starodubtseva MN (2011) Mechanical properties of cells and ageing. Ageing Res Rev 10(1):16–25. doi: 10.1016/j.arr.2009.10.005 PubMedCrossRefGoogle Scholar
  63. Tanwar GS et al (2012) Thrombocytopenia in childhood malaria with special reference to P. vivax monoinfection: a study from Bikaner (northwestern India). Platelets 23(3):211–216. doi: 10.3109/09537104.2011.607520 PubMedCrossRefGoogle Scholar
  64. Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  65. Tziakas D, Chalikias G, Grapsa A, Gioka T, Tentes I, Konstantinides S (2012) Red blood cell distribution width: a strong prognostic marker in cardiovascular disease: is associated with cholesterol content of erythrocyte membrane. Clin Hemorheol Microcirc 51(4):243–254. doi: 10.3233/CH-2012-1530 PubMedGoogle Scholar
  66. Wickramasinghe SN, Abdalla SH (2000) Blood and bone marrow changes in malaria. Bailliere Best Pract Res Clin Haematol 13(2):277–299. doi: 10.1053/beha.1999.0072 CrossRefGoogle Scholar
  67. Wickramasinghe SN, Looareesuwan S, Nagachinta B, White NJ (1989) Dyserythropoiesis and ineffective erythropoiesis in Plasmodium vivax malaria. Br J Haematol 72(1):91–99PubMedCrossRefGoogle Scholar
  68. Williams AR (1973) The effect of bovine and human serum albumins on the mechanical properties on human erythrocyte membranes. Biochim Biophys Acta 307(1):58–64PubMedCrossRefGoogle Scholar
  69. Winograd E, Robles WM, Caldas ML, Cortes GT (2001) Cytoadherence of the malaria-infected erythrocyte membrane to C32 melanoma cells after merozoites are released from parasitized infected cells. Parasitol Res 87(4):264–268PubMedCrossRefGoogle Scholar
  70. Wiser MF, Faur LV, Lanners HN, Kelly M, Wilson RB (1993) Accessibility and distribution of intraerythrocytic antigens of Plasmodium-infected erythrocytes following mild glutaraldehyde fixation and detergent extraction. Parasitol Res 79(7):579–586PubMedCrossRefGoogle Scholar
  71. World Health Organization (2012) World malaria report 2012. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rita de Cássia Mascarenhas Netto
    • 1
  • Camila Fabbri
    • 3
  • Mariana Vaini de Freitas
    • 1
  • Morun Bernardino Neto
    • 1
  • Mário Silva Garrote-Filho
    • 1
  • Marcus Vinícius Guimarães Lacerda
    • 2
  • Emerson Silva Lima
    • 3
  • Nilson Penha-Silva
    • 1
  1. 1.Institute of Genetics and BiochemistryFederal University of UberlândiaUberlândiaBrazil
  2. 2.Tropical Medicine Foundation Dr. Heitor Vieira DouradoManausBrazil
  3. 3.Faculty of Pharmaceutical SciencesFederal University of AmazonasManausBrazil

Personalised recommendations