Parasitology Research

, Volume 113, Issue 2, pp 761–767 | Cite as

Prevalence and diversity of Encephalitozoon spp. and Enterocytozoon bieneusi in wild boars (Sus scrofa) in Central Europe

  • Karel Němejc
  • Bohumil SakEmail author
  • Dana Květoňová
  • Vladimír Hanzal
  • Paweł Janiszewski
  • Pavel Forejtek
  • Dušan Rajský
  • Michaela Kotková
  • Petra Ravaszová
  • John McEvoy
  • Martin Kváč
Original Paper


From 2011 to 2012, the occurrence of Enterocytozoon bieneusi and Encephalitozoon spp. was surveyed at 29 randomly selected localities (both forest areas and enclosures) across four Central European countries: Austria, the Czech Republic, Poland, and the Slovak Republic. Isolates were genotyped by PCR amplification and characterization of the internal transcribed spacer (ITS) region using Enterocytozoon and Encephalitozoon-specific protocols. PCR revealed 16 mono-infections of Encephalitozoon cuniculi, 33 mono-infections of Enterocytozoon bieneusi and 5 concurrent infections of both Encephalitozoon cuniculi and Enterocytozoon bieneusi out of 460 faecal samples. Two genotypes (I and II) were revealed by sequence analysis of the ITS region of Encephalitozoon cuniculi. Eleven genotypes, five previously found in other hosts including domestic pigs (D, EbpA, EbpC, G and Henan-I) and six novel (WildBoar1–6), were identified in Enterocytozoon bieneusi. No other microsporidia infection was found in the examined faecal samples. Prevalence of microsporidia at the locality level ranged from 0 to 58.8 %; the prevalence was less than 25 % at more than 86 % of localities. Enterocytozoon bieneusi was detected as a predominant species infecting Eurasian wild boars (Sus scrofa). The present report is the most comprehensive survey of microsporidia infections in wild boars within the Czech Republic and selected Central European countries.


Internal Transcribe Spacer Faecal Sample Wild Boar Slovak Republic Central European Country 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by projects of Ministry of Education, Youth and Sports of the Czech Republic (MSM 6007665806), project of the Grant Agency of University of South Bohemia (022/2010/Z and 011/2013/Z), research project of the Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic (Z60220518).


  1. Abe N, Kimata I (2010) Molecular survey of Enterocytozoon bieneusi in a Japanese porcine population. Vector-Borne Zoonotic Dis 10:425–427PubMedCrossRefGoogle Scholar
  2. Bornay-Llinares FJ, Da Silva AJ, Moura H, Schwarts DA, Visvesvara GS, Pieniazek NJ, Cruz-Lopez A, Hernandes-Jaurequi P, Guerrero J, Enriquise FJ (1998) Imunologic, microscopic, and molecular evidence of Encephalitozoon intestinalis (Septata intestinalis) infection in mammals other than humans. J Infect Dis 178:820–826PubMedCrossRefGoogle Scholar
  3. Breitenmoser AC, Mathis A, Bürgi E, Weber R, Deplazes P (1999) High prevalence of Enterocytozoon bieneusi in swine with four genotypes that differ from those identified in humans. Parasitology 118:447–453PubMedCrossRefGoogle Scholar
  4. Buckholt MA, Lee JH, Tzipori S (2002) Prevalence of Enterocytozoon bieneusi in swine: an 18-month survey at a slaughterhouse in Massachusetts. Appl Environ Microbiol 68:2595–2599PubMedCentralPubMedCrossRefGoogle Scholar
  5. Carlson JR, Li L, Helton CL, Munn RJ, Wasson K, Perez RV, Gallay BJ, Finkbeiner WE (2004) Disseminated microsporidiosis in a pancreas/kidney transplant recipient. Arch Pathol Lab Med 128:41–43Google Scholar
  6. Dengjel B, Zahler M, Hermanns W, Heinritzi K, Spillmann T, Thomschke A, Loscher T, Gothe R, Rinder H (2001) Zoonotic potential of Enterocytozoon bieneusi. J Clin Microbiol 39:4495–4499PubMedCentralPubMedCrossRefGoogle Scholar
  7. Deplazes P, Mathis A, Müller C, Weber R (1996) Molecular epidemiology of Encephalitozoon cuniculi and first detection of Enterocytozoon bieneusi in faecal samples of pigs. J Eukaryot Microbiol 43:93SPubMedCrossRefGoogle Scholar
  8. Deplazes P, Mathis A, Weber R (2000) Epidemiology and zoonotic aspects of microsporidia of mammals and birds. Contrib Microbiol 6:236–260PubMedCrossRefGoogle Scholar
  9. Didie ES, Vossbrinck CR, Baker MD, Rogers LB, Bertucci DC, Shadduck JA (1995) Identification and characterization of three Encephalitozoon cuniculi strains. Parasitology 111:411–421CrossRefGoogle Scholar
  10. Didier ES (2005) Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop 94:61–76PubMedCrossRefGoogle Scholar
  11. Didier ES, Weiss LM (2006) Microsporidiosis: current status. Curr Opin Infect Dis 19:485–492PubMedCentralPubMedCrossRefGoogle Scholar
  12. Didier ES, Stovall ME, Green LC, Brindley PJ, Sestak K, Didier PJ (2004) Epidemiology of microsporidiosis: sources and modes of transmission. Vet Parasitol 126:145–166PubMedCrossRefGoogle Scholar
  13. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  14. Horvath M, Leng L, Stefkovic M, Revajova V, Halanova M (1999) Lethal encephalitozoonosis in cyclophosphamide-treated rabbits. Acta Vet Hung 47:85–93PubMedCrossRefGoogle Scholar
  15. Jeong DK, Won GY, Park BK, Hur J, You JY, Kang SJ, Oh IG, Lee YS, Stein BD, Lee JH (2007) Occurrence and genotypic characteristics of Enterocytozoon bieneusi in pigs with diarrhoea. Parasitol Res 102:123–128PubMedCrossRefGoogle Scholar
  16. Kahler AM, Thurston-Enriquez JA (2007) Human pathogenic microsporidia detection in agricultural samples: method development and assessment. Parasitol Res 100:529–538PubMedCrossRefGoogle Scholar
  17. Katzwinkel-Wladarsch S, Lieb M, Helse W, Löscher T, Rinder H (1996) Direct amplification and species determination of microsporidian DNA from stool specimens. Trop Med Int Health 1:373–378PubMedCrossRefGoogle Scholar
  18. Kotková M, Sak B, Květoňová D, Kváč M (2013) Latent microsporidiosis caused by Encephalitozoon cuniculi in immunocompetent hosts: a murine model demonstrating the ineffectiveness of the immune system and treatment with albendazole. PLoS One 8(4):e60941PubMedCentralPubMedCrossRefGoogle Scholar
  19. Leelayoova S, Piyaraj P, Subrungruang I, Pagornrat W, Naaglor T, Phumklan S, Taamasri P, Suwanasri J, Mungthin M (2009) Genotypic characterization of Enterocytozoon bieneusi in specimens from pigs and humans in a pig farm community in Central Thailand. J Clin Microbiol 47:1572–1574PubMedCentralPubMedCrossRefGoogle Scholar
  20. Luptáková L, Bálent P, Valenčáková A, Hisira V, Petrovová E (2010) Detection of Toxoplasma gondii and Encephalitozoon spp. in wild boars by serological and molecular methods. Rev Med Vet 161:559–563Google Scholar
  21. Malčeková B, Halánová M, Sulínová Z, Molnár L, Ravaszová P, Adam J, Halán M, Valocký I, Baranovič M (2010) Seroprevalence of antibodies to Encephalitozoon cuniculi and Encephalitozoon intestinalis in humans and animals. Res Vet Sci 89:358–361PubMedCrossRefGoogle Scholar
  22. Mathis A, Breitenmoser AC, Deplazes P (1999) Detection of new Enterocytozoon genotypes in fecal samples of farm dog and cat. Parasite 6:189–193PubMedGoogle Scholar
  23. Reetz J, Nöckler K, Reckinger S, Vargas MM, Weisse W, Broglia A (2009) Identification of Encephalitozoon cuniculi genotype III and two novel genotypes of Enterocytozoon bieneusi in swine. Parasitol Int 58:285–292PubMedCrossRefGoogle Scholar
  24. Rinder H, Thomschke A, Dengjel B, Gothe R, Löscher T, Zahler M (2000) Close genotypic relationship between Enterocytozoon bieneusi from humans and pigs and first detection in cattle. J Parasitol 86:185–188PubMedGoogle Scholar
  25. Sak B, Kváč M, Hanzlíková D, Cama V (2008) First report of Enterocytozoon bieneusi infection on a pig farm in the Czech Republic. Vet Parasitol 153:220–224PubMedCrossRefGoogle Scholar
  26. Sak B, Kašičková D, Kváč M, Květoňová D, Ditrich O (2010) Microsporidia in exotic birds: intermittent spore excretion of Encephalitozoon spp. in naturally infected budgerigars (Melopsittacus undulatus). Vet Parasitol 168:196–200PubMedCrossRefGoogle Scholar
  27. Sak B, Kváč M, Kučerová Z, Květoňová D, Saková K (2011a) Latent microsporidial infection in immunocompetent individuals—a longitudinal study. PLoS Negl Trop Dis 5:e1162PubMedCentralPubMedCrossRefGoogle Scholar
  28. Sak B, Kváč M, Květoňová D, Albrecht T, Piálek J (2011b) The first report on natural Enterocytozoon bieneusi and Encephalitozoon spp. infections in wild East-European House Mice (Mus musculus musculus) and West-European House Mice (M. m. domesticus) in a hybrid zone across the Czech Republic-Germany border. Vet Parasitol 178:246–250PubMedCrossRefGoogle Scholar
  29. Sak B, Petrzelkova KJ, Kvetonova D, Mynarova A, Shutt KA, Pomajbikova K et al (2013) Long-term monitoring of microsporidia, cryptosporidium and giardia infections in western lowland gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS One 8(8):e71840. doi: 10.1371/journal.pone.0071840 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Santín M, Fayer R (2009) Enterocytozoon bieneusi genotype nomenclature based on the internal transcribed spacer sequence: a consensus. J Eukaryot Microbiol 56:34–38PubMedCrossRefGoogle Scholar
  31. Santín M, Fayer R (2011) Microsporidiosis: Enterocytozoon bieneusi in domesticated and wild animals. Res Vet Sci 90:363–371PubMedCrossRefGoogle Scholar
  32. Sinski E (2003) Environmental contamination with protozoan parasite infective stages: biology and risk assessment. Acta Microbiol Pol 52:97–107PubMedGoogle Scholar
  33. Slodkowicz-Kowalska A, Graczyk TK, Tamang L, Girouard AS, Majewska AC (2007) Asymptomatic Enterocytozoon bieneusi microsporidiosis in captive mammals. Parasitol Res 100:505–509PubMedCrossRefGoogle Scholar
  34. Sulaiman IM, Fayer R, Lal AA, Trout JM, Schaefer FW III, Xiao L (2003) Molecular characterization of microsporidia indicates that wild mammals harbor host-adapted Enterocytozoon spp. as well as human-pathogenic Enterocytozoon bieneusi. Appl Environ Microbiol 69:4495–4501PubMedCentralPubMedCrossRefGoogle Scholar
  35. Thellier M, Breton J (2008) Enterocytozoon bieneusi in human and animals, focus on laboratory identification and molecular epidemiology. Parasite 15:349–358PubMedCrossRefGoogle Scholar
  36. Valenčáková A, Balent P, Húska M, Novotný F, Luptáková L (2006) First report on Encephalitozoon intestinalis infection of swine in Europe. Acta Vet Hung 54:407–411PubMedCrossRefGoogle Scholar
  37. Wagnerová P, Sak B, Květoňová D, Buňatová Z, Civišová H, Maršálek M, Kváč M (2012) Enterocytozoon bieneusi and Encephalitozoon cuniculi in horses kept under different management systems in the Czech Republic. Vet Parasitol 190:573–577PubMedCrossRefGoogle Scholar
  38. Wang L, Zhang H, Zhao X, Zhang L, Zhang G, Guo M, Liu L, Feng Y, Xiao L (2013) Zoonotic Cryptosporidium species and Enterocytozoon bieneusi genotypes in HIV-positive patients on antiretroviral therapy. J Clin Microbiol 51:557–563PubMedCentralPubMedCrossRefGoogle Scholar
  39. Weber R, Bryan RT, Schwartz DA (1996) Human microsporidia infections. Clin Microbiol Rev 7:426–461Google Scholar
  40. Weiss LM (2001) Microsporidia: emerging pathogenic protists. Acta Trop 78:89–102PubMedCrossRefGoogle Scholar
  41. Wittner M (1999) The microsporidia and microsporidiosis. ASM Press, Washington, 553 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karel Němejc
    • 1
  • Bohumil Sak
    • 2
    Email author
  • Dana Květoňová
    • 2
  • Vladimír Hanzal
    • 1
    • 3
  • Paweł Janiszewski
    • 4
  • Pavel Forejtek
    • 5
  • Dušan Rajský
    • 6
  • Michaela Kotková
    • 2
  • Petra Ravaszová
    • 7
  • John McEvoy
    • 8
  • Martin Kváč
    • 1
    • 2
  1. 1.Faculty of AgricultureUniversity of South Bohemia in České BudějoviceČeské BudějoviceCzech Republic
  2. 2.Institute of ParasitologyBiology Centre of the Academy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  3. 3.Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePragueCzech Republic
  4. 4.Faculty of Animal BioengineeringUniversity of Warmia and MazuryOlsztynPoland
  5. 5.Institute for Wildlife EcologyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  6. 6.Faculty of ForestryTechnical University in ZvolenZvolenSlovak Republic
  7. 7.Department of Biology and GeneticsUniversity of Veterinary Medicine and Pharmacy in KošiceKošiceSlovak Republic
  8. 8.Veterinary and Microbiological Sciences DepartmentNorth Dakota State UniversityFargoUSA

Personalised recommendations