Parasitology Research

, Volume 113, Issue 2, pp 565–592 | Cite as

Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review

  • Clarice Noleto Dias
  • Denise Fernandes Coutinho Moraes
Original Paper


This review aims to describe essential oils and their constituent compounds that exhibit bioactivity against Aedes aegypti L. (Diptera: Culicidae) larvae, the immature stage of the primary vector of dengue. This review is based on original articles obtained by searching on major databases. Our literature review revealed that 361 essential oils from 269 plant species have been tested for their larvicidal activity. More than 60 % of these essential oils were considered active (LC50 < 100 mg/L), and the majority of these active oils were derived from species belonging to Myrtaceae, Lamiaceae, and Rutaceae. The most active essential oils exhibited effective concentrations comparable with the dosage recommended for the use of temephos in container breeding. Approximately 27 % of the plants studied for their larvicidal activity against A. aegypti were collected in Brazil. Essential oils rich in phenylpropanoids, oxygenated sesquiterpenes, and monoterpene hydrocarbons were found to be the most active. When the isolates were tested, phenylpropanoids and monoterpene hydrocarbons were the most active compound classes. We describe the plant parts used and the major constituents of the essential oils. In addition, we discuss factors affecting the activity (such as plant parts, age of the plant, chemotypes, larval source, and methods used), structure–activity relationships, and mechanisms of action of the essential oils and their compounds. Essential oils have been widely investigated and show high larvicidal activity against A. aegypti. This review reveals that the essential oils are effective alternatives for the production of larvicides, which can be used in vector-borne disease control programmes.


Eugenol Carvacrol Larvicidal Activity Sesamol Carvone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by grants from the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (no. APP-UNIVERSAL-00371/11) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, through the concession of scholarships and financial support.


  1. Aciole SDG (2009) Avaliação da atividade inseticida dos óleos essenciais das plantas amazônicas Annonaceae, Boraginaceae e de mata atlântica Myrtaceae como alternativa de controle às larvas de Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Dissertation, University of LisbonGoogle Scholar
  2. Aciole SDG, Piccoli CF, Duquel JE, Costa EV, Navarro-Silva MA, Marques FA, Maia BLNS, Pinheiro MLB, Rebelo MT (2011) Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Rev Colomb Entomol 37:262–268Google Scholar
  3. Aguiar JCD, Santiago GMP, Lavor PL et al (2010) Chemical constituents and larvicidal activity of Hymenaea courbaril fruit peel. Nat Prod Commun 5:1977–1980PubMedGoogle Scholar
  4. Aguilera L, Navarro A, Tacoronte JE, Leyva M, Marquetti MC (2003) Efecto letal de myrtaceas cubanas sobre Aedes aegypti (Diptera: Culicidae). Rev Cuba Med Trop 55:100–104Google Scholar
  5. Albuquerque MRJR, Silveira ER, Uchoa DEA (2004) Chemical composition and larvicidal activity of the essential oils from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae). J Agric Food Chem. doi: 10.1021/jf0352881 PubMedGoogle Scholar
  6. Albuquerque MRJR, Costa SMO, Bandeira PN, Santiago GMP, Andrade-Neto M, Silveira ER, Pessoa ODL (2007) Nematicidal and larvicidal activities of the essential oils from aerial parts of Pectis oligocephala and Pectis apodocephala Baker. An Acad Bras Cienc. doi: 10.1590/S0001-37652007000200003 PubMedGoogle Scholar
  7. Ali A, Tabanca N, Demirci B, Baser KH, Ellis J, Gray S, Lackey BR, Murphy C, Khan IA, Wedge DE (2013a) Composition, mosquito larvicidal, biting deterrent and antifungal activity of essential oils of different plant parts of Cupressus arizonica var. glabra (‘Carolina Sapphire’). Nat Prod Commun 8:257–260PubMedGoogle Scholar
  8. Ali A, Murphy CC, Demirci B, Wedge DE, Sampson BJ, Khan IA, Baser KHC, Tabanca N (2013b) Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) essential oils and individual compounds against Stephanitis pyrioides and Aedes aegypti. Pest Manag Sci. doi: 10.1002/ps.3518 Google Scholar
  9. Almeida RRP, Souto RNP, Bastos CN, Silva MHL, Maia JGS (2009) Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem Biodivers. doi: 10.1002/cbdv.200800212 PubMedGoogle Scholar
  10. Amaral FMM, Ribeiro MNS, Barbosa-Filho JM, Reis AS, Nascimento FRF, Macedo RO (2006) Plants and chemical constituents with giardicidal activity. Bras J Pharmacogn 16:696–720Google Scholar
  11. Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res. doi: 10.1007/s00436-006-0182-3 Google Scholar
  12. Ansari MA, Mittal PK, Razdan RK, Sreehari U (2005) Larvicidal and mosquito repellent activities of pine (Pinus longifolia, Family: Pinaceae) oil. J Vector Borne Dis 42:95–99PubMedGoogle Scholar
  13. Arriaga AMC, Rodrigues FEA, Lemos TLG, Oliveira MCF, Lima JQ, Santiago GMP, Braz-Filho R, Mafezoli J (2007) Composition and larvicidal activity of essential oil from Stemodia maritima L. Nat Prod Commun 2:1237–1239Google Scholar
  14. Autran ES, Neves IA, Silva CSB, Santos GKN, Câmara CAG, Navarro DMAF (2009) Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol. doi: 10.1016/j.biortech.2008.10.055 PubMedGoogle Scholar
  15. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol. doi: 10.1016/j.fct.2007.09.106 PubMedGoogle Scholar
  16. Barbosa JDF, Silva VB, Alves PB, Gumina G, Santos RLC, Sousa DP, Cavalcanti SCH (2012a) Structure–activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci. doi: 10.1002/ps.3331 Google Scholar
  17. Barbosa PCS, Medeiros RS, Sampaio PTB, Vieira G, Wiedemann LSM, Veiga-Junior VF (2012b) Influence of abiotic factors on the chemical composition of Copaiba oil (Copaifera multijuga Hayne): soil composition, seasonality and diameter at breast height. J Braz Chem Soc 23:1823–1833Google Scholar
  18. Baser KHC, Buchbauer G (2010) Handbook of essential oils: science, technology, and applications. CRC, Boca RatonGoogle Scholar
  19. Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manag 256:2166–2174Google Scholar
  20. Bilal H, Hassan SA (2012) Plants secondary metabolites for mosquito control. Asian Pac J Trop Dis 168–168Google Scholar
  21. Borah R, Saikia K, Talukdar AK, Kalita MC (2012) Chemical composition and biological activity of the leaf essential oil of Zanthoxylum oxyphyllum. Planta Med. doi: 10.1055/s-0032-1307608 Google Scholar
  22. Braga IA, Valle D (2007) Aedes Aegypti: insecticides, mechanisms of action and resistance. Epidemiol Serv Saúde 16:279–293Google Scholar
  23. Cantrell CL, Pridgeon JW, Fronczek FR, Becnel JJ (2010) Structure–activity relationship studies on derivatives of Eudesmanolides from Inula helenium as toxicants against Aedes aegypti larvae and adults. Chem Biodivers 7:1681–1697PubMedGoogle Scholar
  24. Carvalho AFU, Melo VMM, Craveiro AA, Machado MIL, Bantim MB, Rabelo EF (2003) Larvicidal activity of the essential oil from Lippia sidoides Cham. against Aedes aegypti Linn. Mem Inst Oswaldo Cruz 98:569–571PubMedGoogle Scholar
  25. Cavalca PAM, Lolis MIGA, Reis B, Bonato CM (2010) Homeopathic and larvicide effect of Eucalyptus cinerea essential oil against Aedes aegypti. Braz Arch Biol Tech 53:835–843Google Scholar
  26. Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544PubMedGoogle Scholar
  27. Champakaew D, Choochote W, Pongpaibul Y, Chaithong U, Jitpakdi A, Tuetun B, Pitasawat B (2007) Larvicidal efficacy and biological stability of a botanical natural product, zedoary oil-impregnated sand granules, against Aedes aegypti (Diptera, Culicidae). Parasitol Res. doi: 10.1007/s00436-006-0350-5 PubMedGoogle Scholar
  28. Chantraine JM, Laurent D, Ballivian C, Saavedra G, Ibañez R, Vilaseca LA (1998) Insecticidal activity of essential oils on Aedes aegypti larvae. Phytoterap Res 12:350–354Google Scholar
  29. Cheah S-X, Tay J-W, Chan L-K, Jaal Z (2013) Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-013-3506-0 PubMedGoogle Scholar
  30. Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol. doi: 10.1016/S0960-8524(03)00008-7 PubMedGoogle Scholar
  31. Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem. doi: 10.1021/jf0497152 Google Scholar
  32. Cheng SS, Chang HT, Lin CY, Chen PS, Huang CG, Chend WJ, Chang ST (2009a) Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci. doi: 10.1002/ps.1693 PubMedGoogle Scholar
  33. Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009b) Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour Technol. doi: 10.1016/j.biortech.2008.02.038 Google Scholar
  34. Cheng SS, Chua MT, Chang EH, Huang CG, Chen WJ, Chang ST (2009c) Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol. doi: 10.1016/j.biortech.2007.11.060 Google Scholar
  35. Cheng SS, Lin CY, Chung MJ, Liu YH, Huang CG, Chang ST (2013) Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind Crops Prod. doi: 10.1016/j.indcrop.2013.03.016 Google Scholar
  36. Choochote W, Chaiyasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B, Pitasawat B (2005) Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae). J Vector Ecol 30:302–309PubMedGoogle Scholar
  37. Chung IM, Seo SH, Kang EY, Park SD, Park WH, Moon HI (2009) Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochem Syst Ecol. doi: 10.1016/j.bse.2009.06.004 Google Scholar
  38. Ciccia G, Coussio J, Mongelli E (2000) Insecticidal activity against Aedes aegypti larvae of some medicinal South American plants. J Ethnopharmacol 72:185–189PubMedGoogle Scholar
  39. Cole ER (2008) Estudo fitoquímico do óleo essencial dos frutos da aroeira (Schinus terebinthifolius RADDI) e sua eficácia no combate ao dengue. Dissertation, Federal University of Espírito SantoGoogle Scholar
  40. Consoli RAGB, Oliveira RL (1994) Principais mosquitos de importância sanitária no Brasil. Editora Fiocruz, Rio de JaneiroGoogle Scholar
  41. Costa JGM, Pessoa ODL, Menezes EA, Santiago GMP, Lemos TLG (2004) Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub. (Boraginaceae). Flavour Fragr J. doi: 10.1002/ffj.1332 Google Scholar
  42. Costa JGM, Rodrigues FFG, Angélico EC et al (2005) Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Braz J Pharmacogn 15:304–309Google Scholar
  43. Costa JGM, Santos PF, Brito SA, Rodrigues FFG, Coutinho HDM, Botelho MA, Lima SG (2010a) Composição química e toxicidade de óleos essenciais de espécies de Piper frente a larvas de Aedes aegypti L. (Diptera: Culicidae). Lat Am J Pharm 29:463–467Google Scholar
  44. Costa JGM, Rodrigues FFG, Sousa EO, Junior DMS, Campos AR, Coutinho HDM, Lima SG (2010b) Composition and larvicidal activity of the essential oils of Lantana camara and Lantana montevidensis. Chem Nat Comp 46:313–315Google Scholar
  45. Dharmagadda VSS, Naik SN, Mittal PK, Vasudevan P (2005) Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol. doi: 10.1016/j.biortech.2004.10.020 Google Scholar
  46. Doria GAA, Silva WJ, Carvalho GA, Alves PB, Cavalcanti SCH (2010) A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti. Pharm Biol 48:615–620PubMedGoogle Scholar
  47. Eldridge BF (2005) Mosquitoes, the Culicidae. In: Marquardt WC (ed) Biology of disease vectors, 2nd edn. Elsevier, Amsterdam, pp 95–111Google Scholar
  48. Enan EE (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C 130:325–337Google Scholar
  49. Enan EE (2005) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 59:161–171PubMedGoogle Scholar
  50. Evans PD (1984) A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J Physiol 348:307–324PubMedGoogle Scholar
  51. Feitosa EM, Arriaga AMC, Lemos TLG, Lima JQ, Vasconcelos JN, Oliveira MCF, Santiago GMP, Nascimento RF (2007) Zanthoxylum articulatum Engler (Rutaceae) essential oil: chemical composition and larvicidal activity. J Essent Oil Res. doi: 10.1080/10412905.2007.9699311 Google Scholar
  52. Feitosa EMA, Arriaga AMC, Santiago GMP, Lemos TLG, Oliveira MCF, Vasconcelos JN, Lima JQ, Malcher GT, Nascimento RF, Braz-Filho R (2009) Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae). J Braz Chem Soc 20:375–378Google Scholar
  53. Fontes UR Jr, Ramos CS, Serafini MR, Cavalcanti SCH, Alves PB, Lima GM, Andrade PHS, Bonjardim LR, Quintans LJ Jr, Araújo AAS (2012) Evaluation of the lethality of Porophyllum ruderale essential oil against Biomphalaria glabrata, Aedes aegypti and Artemia salina. Afr J Biotechnol 11:3169–3172Google Scholar
  54. Franzios G, Mirotsou M, Hatziapostolou E, Kral J, Scouras ZG, Mavragani-Tsipidou P (1997) Insecticidal and genotoxic activities of mint essential oils. J Agric Food Chem 45:2690–2694Google Scholar
  55. Gbolade AA, Lockwood GB (2008) Toxicity of Ocimum sanctum L. essential oil to Aedes aegypti larvae and its chemical composition. J Essent Oil-Bear Plants. doi: 10.1080/0972060X.2008.10643611 Google Scholar
  56. George S, Vincent S (2005) Comparative efficacy of Annona squamosa Linn. and Pongamia glabra Vent. to Azadirachta indica A. Juss against mosquitoes. J Vector Borne Dis 42:159–163PubMedGoogle Scholar
  57. Geris R, Ribeiro PR, Brandão MS, Silva HHG, Silva IG (2012) Bioactive natural products as potential candidates to control Aedes aegypti, the vector of dengue. In: Atta-ur-Rahman FRS (ed) Studies in natural products chemistry, vol 37. Elsevier, Amsterdam, pp 277–376Google Scholar
  58. Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135:581–598PubMedGoogle Scholar
  59. Góis RWS (2010) Estudo fitoquímico e biológico de Bauhinia acuruana Moric. Dissertation, Federal University of CearáGoogle Scholar
  60. Góis RWS, Sousa LM, Santiago GMP, Romero NR, Lemos TLG, Arriaga AMC, Braz-Filho R (2013) Larvicidal activity against Aedes aegypti of pacharin from Bauhinia acuruana. Parasitol Res. doi: 10.1007/s00436-013-3407-2 Google Scholar
  61. Govindarajan M (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med. doi: 10.1016/S1995-7645(10)60210-6 Google Scholar
  62. Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res. doi: 10.1007/s00436-011-2731-7 Google Scholar
  63. Govindarajan M, Sivakumar R, Rajeswari M, Veerakumar K (2013) Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-013-3557-2 Google Scholar
  64. Grodnitzky J, Coats J (2002) QSAR evaluation of monoterpenoids' insecticidal activity. J Agric Food Chem. doi: 10.1021/jf0201475 Google Scholar
  65. Gubler DJ (2011) Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health. doi: 10.2149/tmh.2011-S05 PubMedCentralPubMedGoogle Scholar
  66. Gupta B, Reddy BPN (2013) Fight against dengue in India: progresses and challenges. Parasitol Res. doi: 10.1007/s00436-013-3342-2 Google Scholar
  67. Hemingway J, Ranson H (2005) Chemical control of vectors and mechanisms of resistance. In: Marquardt WC (ed) Biology of disease vectors, 2nd edn. Elsevier, Amsterdam, pp 627–637Google Scholar
  68. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. doi: 10.1146/annurev.ento.51.110104.151146 PubMedGoogle Scholar
  69. Jantan I, Ping WO, Visuvalingam SD, Ahmad NW (2003) Larvicidal activity of essential oils and methanol extracts of Malaysian plants on Aedes aegypti. Pharm Biol 41:234–236Google Scholar
  70. Jantan I, Yalvema MF, Ahmad NW, Jamal JA (2005) Insecticidal activities of the leaf oils of eight Cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm Biol. doi: 10.1080/13880200500220771 Google Scholar
  71. Kalaivani K, Senthil-Nathan S, Murugesan AG (2012) Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-011-2623-x PubMedGoogle Scholar
  72. Khandagle AJ, Tare VS, Raut KD, Morey RA (2011) Bioactivity of essential oils of Zingiber officinalis and Achyranthes aspera against mosquitoes. Parasitol Res. doi: 10.1007/s00436-011-2261-3 PubMedGoogle Scholar
  73. Khanikor B, Parida P, Yadav RNS, Bora D (2013) Comparative mode of action of some terpene compounds against octopamine receptor and acetyl cholinesterase of mosquito and human system by the help of homology modeling and docking studies. J Appl Pharm Sci. doi: 10.7324/JAPS.2013.30202 Google Scholar
  74. Kim NJ, Byun SG, Cho JE, Chung K, Ahn YJ (2008) Larvicidal activity of Kaempferia galanga rhizome phenylpropanoids towards three mosquito species. Pest Manag Sci 64:857–862PubMedGoogle Scholar
  75. Kiran SR, Bhavani K, Devi PS, Rao BRR, Reddy KJ (2006) Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. doi: 10.1016/j.biortech.2005.10.003 Google Scholar
  76. Klowden MJ (2007) Making generalizations about vectors: is there a physiology of “the mosquito”? Entomol Res. doi: 10.1111/j.1748-5967.2007.00044.x Google Scholar
  77. Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C (2005) Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health 36:1412–1422PubMedGoogle Scholar
  78. Kongkaew C, Sakunrag I, Chaiyakunapruk N, Tawatsin A (2011) Effectiveness of citronella preparations in preventing mosquito bites: systematic review of controlled laboratory experimental studies. Trop Med Int Health. doi: 10.1111/j.1365-3156.2011.02781.x PubMedGoogle Scholar
  79. Konishi E (2011) Issues related to recent dengue vaccine development. Trop Med Health. doi: 10.2149/tmh.2011-S01 PubMedCentralPubMedGoogle Scholar
  80. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Eli S (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci. doi: 10.1002/ps.548 PubMedGoogle Scholar
  81. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84Google Scholar
  82. Kovendan K, Murugan K, Kumar PM, Thiyagarajan P, William SJ (2013) Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors. Parasitol Res. doi: 10.1007/s00436-012-3252-8 Google Scholar
  83. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. doi: 10.1016/j.fbp.2010.04.008 Google Scholar
  84. Kulkarni RR, Pawar PV, Joseph MP, Akulwad AK, Sen A, Joshi SP (2013) Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Pest Sci. doi: 10.1007/s10340-013-0502-1 Google Scholar
  85. Kumar D, Kumar A, Prakash O (2012) Potential antifertility agents from plants: a comprehensive review. J Ethnopharmacol. doi: 10.1016/j.jep.2011.12.039 PubMedCentralGoogle Scholar
  86. Kumar P, Mishra S, Malik A, Satya S (2013) Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol Res. doi: 10.1007/s00436-012-3105-5 Google Scholar
  87. Kumar S, Thomas A, Sahgal A, Verma A, Samuel T, Pillai MKK (2002) Effect of the synergist, piperonyl butoxide, on the development of deltamethrin resistance in yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Arch Insect Biochem Physiol. doi: 10.1002/arch.10021 PubMedGoogle Scholar
  88. Kumar S, Wahab N, Warikoo R (2011) Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac J Trop Biomed 2:85–88Google Scholar
  89. Kuo PM, Chu FH, Chang ST, Hsiao WF, Wang SY (2007) Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung. doi: 10.1515/HF.2007.087 Google Scholar
  90. Lahlou M (2004a) Methods to study the phytochemistry and bioactivity of essential oils. Phytoterap Res. doi: 10.1002/ptr.1465 Google Scholar
  91. Lahlou M (2004b) Essential oils and fragrance compounds: bioactivity and mechanisms of action. Flavour Fragr J. doi: 10.1002/ffj.1288 Google Scholar
  92. Lang G, Buchbauer G (2011) A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragr J. doi: 10.1002/ffj.2082 Google Scholar
  93. Lavor PL, Santiago GM, Gois RW, Sousa LM, Bezerra GP, Romero NR, Arriaga AM, Lemos TL, Alves PB, Gomes PC (2012) Larvicidal activity against Aedes aegypti of essential oils from northeast Brazil. Nat Prod Commun 7:1391–1392PubMedGoogle Scholar
  94. Lee HS (2006) Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens. J Am Mosq Control Assoc. doi: 10.2987/8756-971X%282006%2922%5B292%3AMLAOAM%5D2.0.CO%3B2 Google Scholar
  95. Leyva M, Tacoronte JE, Marquetti MC, Scull R, Montada D, Rodriguez Y, Bruzón RY (2008) Actividad insecticida de aceites esenciales de plantas en larvas de Aedes aegypti (Diptera: Culicidae). Rev Cubana Med Trop 60:78–82Google Scholar
  96. Leyva M, Marquetti MC, Tacoronte JE, Scull R, Tiomno O, Mesa A, Montada D (2009a) Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.) (Diptera: Culicidae). Rev Biomed 20:5–13Google Scholar
  97. Leyva M, Tacoronte JE, Marquetti MC, Scull R, Tiomno O, Mesa A, Montada D (2009b) Utilización de aceites esenciales de pinaceas endémicas como una alternativa en el control del Aedes aegypti. Ver Cuban Med Trop 61:239–243Google Scholar
  98. Lima MAA, Oliveira FFM, Gomes GA et al (2011) Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae). Afr J Biotechnol 10:11716–11720Google Scholar
  99. Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, Morais SM, Carvalho AFU (2013) Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. doi: 10.1007/s00436-013-3351-1 Google Scholar
  100. Liu XC, Dong HW, Zhou L, Du SS, Liu ZL (2013) Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-012-3251-9 Google Scholar
  101. Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Melec G, Vasapollo G (2009) Study of technical CNSL and its main components as new green larvicides. Green Chem. doi: 10.1039/b811504d Google Scholar
  102. López O, Fernández-Bolaños JG, Gil MV (2005) New trends in pest control: the search for greener insecticides. Green Chem. doi: 10.1039/b500733j Google Scholar
  103. López MD, Pascual-Villalobos MJ (2010) Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crops Prod. doi: 10.1016/j.indcrop.2009.11.005 Google Scholar
  104. Lucia A, Audino PG, Seccacini E, Licastro S, Zerba E, Masuh H (2007) Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc. doi: 10.2987/8756-971X%282007%2923%5B299%3ALEOEGE%5D2.0.CO%3B2 PubMedGoogle Scholar
  105. Lucia A, Licastro S, Zerba E, Masuh H (2008) Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. Entomol Exp Appl. doi: 10.1111/j.1570-7458.2008.00757.x Google Scholar
  106. Lucia A, Juan LW, Zerba EN, Harrand L, Marcó M, Masuh HM (2012) Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus essential oils against Aedes aegypti (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-011-2685-9 PubMedGoogle Scholar
  107. Magalhães LAM, Lima MP, Marques MOM, Facanali R, Pinto ACS, Tadei WP (2010) Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules. doi: 10.3390/molecules15085734 PubMedGoogle Scholar
  108. Maheswaran R, Ignacimuthu S (2012) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res. doi: 10.1007/s00436-011-2702-z PubMedGoogle Scholar
  109. Manzoor F, Samreen KB, Parveen Z (2013) Larvicidal activity of essential oils against Aedes aegypti and Culex quinquefasciatus larvae (Diptera: Culicidae). J Anim Plant Sci 23:420–424Google Scholar
  110. Marinho SC (2010) Chemical study, electrochemical evaluation and larvicidal activity of essential oil from leaves of Pimenta dioica Lindl front of Aedes aegypti (Linnaeus, 1762). Dissertation, Federal University of ParaíbaGoogle Scholar
  111. Marques MMM, Morais SM, Vieira ÍGP, Vieira MGS, Silva ARA, Almeida RR, Guedes MIF (2011) Larvicidal a activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc. doi: 10.2987/10-6056.1 PubMedGoogle Scholar
  112. Massebo F, Tadesse M, Bekele T, Balkew M, Gebre-Michael T (2009) Evaluation on larvicidal effects of essential oils of some local plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera, Culicidae) in Ethiopia. Afr J Biotechnol 8:4183–4188Google Scholar
  113. Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomes TCS, Paiva MHS, Regis LN, Furtado AF, Magalhaes T, Macoris MLG, Andrighetti MTM, Ayres CFJ (2010) Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. doi: 10.1016/j.actatropica.2009.10.015 PubMedGoogle Scholar
  114. Mendes LSS (2011) Estudo químico e atividade larvicida frente a Aedes aegypti do óleo essencial das folhas de Cinnamomum zeylanicum Breyn (canela). Dissertation, Federal University of MaranhãoGoogle Scholar
  115. Mendonça FAC, Silva KFS, Santos KK, Ribeiro-Jr KAL, Sant’Ana AEG (2005) Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Fitoterapia. doi: 10.1016/j.fitote.2005.06.013 PubMedGoogle Scholar
  116. Mora FD, Avila JL, Rojas LB, Ramirez R, Usubillaga A, Segnini S, Carmona J, Silva B (2010) Chemical composition and larvicidal activity of Eugenia triquetra essential oil from Venezuelan Andes. Nat Prod Commun 5:965–968PubMedGoogle Scholar
  117. Morais SM, Cavalcanti ESB, Bertini LM, Oliveira CLL, Rodrigues JRB, Cardoso JHL (2006) Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc. doi: 10.2987/8756-971X%282006%2922%5B161%3ALAOEOF%5D2.0.CO%3B2 PubMedGoogle Scholar
  118. Morais SM, Facundo VA, Bertini LM et al (2007) Chemical composition and larvicidal activity of essential oils from Piper species. Biochem Syst Ecol. doi: 10.1016/j.bse.2007.05.002 Google Scholar
  119. Morais LAS (2009) Influência dos fatores abióticos na composição química dos óleos essenciais. Hortic Bras 27:S4050–S4063Google Scholar
  120. Nagella P, Ahmad A, Kim SJ, Chung IM (2012) Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol Immunotoxicol. doi: 10.3109/08923973.2011.592534 Google Scholar
  121. Nascimento AA (2012) Óleo essencial dos botões florais do cravo-da-índia (Syzygium aromaticum): extração, caracterização e atividade larvicida frente ao Aedes aegypti (Linnaeus, 1762). Dissertation, Federal University of MaranhãoGoogle Scholar
  122. Nascimento JC, David JM, Barbosa LCA, Paula VF, Demuner AJ, David JP, Conserva LM, Ferreira-Jr JC, Guimarães EF (2013) Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C DC. (Piperaceae). Pest Manag Sci. doi: 10.1002/ps.3495 PubMedGoogle Scholar
  123. Nyahanga T, Jondika JI, Manguro LOA, Orwa JA (2010) Chemical composition, antiplasmodial, larvicidal and antimicrobial activities of essential oils of Toddalia asiatica leaves and fruits. Int J Essent Oil Ther 4:54–58Google Scholar
  124. Oliveira VB, Yamada LT, Fagg CW, Brandão MGL (2012) Native foods from Brazilian biodiversity as a source of bioactive compounds. Food Res Intern. doi: 10.1016/j.foodres.2012.03.011 Google Scholar
  125. Pandey SK, Tandon S, Ahmad A, Singh AK, Tripathi AK (2013) Structure–activity relationships of monoterpenes and acetyl derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci. doi: 10.1002/ps.3488 PubMedGoogle Scholar
  126. Park HM, Kim J, Chang KS, Kim BS, Yang YJ, Kim GH, Shin SC, Park IK (2011) Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J Med Entomol. doi: 10.1603/ME10108 PubMedGoogle Scholar
  127. Pathak N, Mittal PK, Singh OP, Sagar DV, Vasudevan P (2000) Larvicidal action of essential oils from plants against the vector mosquitoes Anopheles stephensi (Liston), Culex quinquefasciatus (Say) and Aedes aegypti (L.). Int Pest Control 42:53–55Google Scholar
  128. Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol Res. doi: 10.1007/s00436-010-2174-6 Google Scholar
  129. Perumalsamy H, Chang KS, Park C, Ahn YJ (2010) Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and -resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi. J Agric Food Chem. doi: 10.1021/jf102193k PubMedGoogle Scholar
  130. Perumalsamy H, Kim NJ, Ahn AJ (2009) Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J Med Entomol 46:1420–1423PubMedGoogle Scholar
  131. Pflüger HJ, Stevenson PA (2005) Evolutionary aspects of octopaminergic systems with emphasis on arthropods. Arthropod Struct Dev 34:379–396Google Scholar
  132. Pimenta ATA, Santiago GMP, Arriaga AMC, Menezes GHA, Bezerra SB (2006) Phytotochemical study and evaluation of larvicidal activity of Pterodon polygalaeflorus Benth (Leguminosae) against Aedes aegypti. Braz J Pharmacogn 16:501–505Google Scholar
  133. Pitasawat B, Champakaew D, Choochote W (2007) Aromatic plant-derived essential oil: an alternative larvicide for mosquito control. Fitoterapia. doi: 10.1016/j.fitote.2007.01.003 Google Scholar
  134. Polson KA, Brogdon WG, Rawlins SC, Chadee DD (2011) Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Trop. doi: 10.1016/j.actatropica.2010.09.005 PubMedGoogle Scholar
  135. Porto KRA, Roel AR, Silva MM, Coelho RM, Scheleder EJD, Jeller AH (2008) Atividade larvicida do óleo de Anacardium humile Saint Hill sobre Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae). Rev Soc Bras Med Trop 41:586–589PubMedGoogle Scholar
  136. Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol. doi: 10.1016/j.biortech.2005.01.007 PubMedGoogle Scholar
  137. Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372PubMedGoogle Scholar
  138. Prophiro JS, Silva MAN, Kanis LA, Silva BM, Duque-Luna JE, Silva OS (2012) Evaluation of time toxicity, residual effect, and growth-inhibiting property of Carapa guianensis and Copaifera sp. in Aedes aegypti. Parasitol Res. doi: 10.1007/s00436-011-2547-5 Google Scholar
  139. Rajkumar S, Jebanesan A (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena dentata (Willd) M. Roam. (Rutaceae) against the chikungunya vector, Aedes aegypti Linn. (Diptera: Culicidae). J Asia Pac Entomol. doi: 10.1016/j.aspen.2010.02.001 Google Scholar
  140. Regnault-Roger C (1997) The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev 2:25–34Google Scholar
  141. Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59:533–561PubMedGoogle Scholar
  142. Ruiz C, Cachay M, Domínguez M, Velásquez C, Espinoza G, Ventosilla P, Rojas R (2011) Chemical composition, antioxidant and mosquito larvicidal activities of essential oils from Tagetes filifolia, Tagetes minuta and Tagetes elliptica from Perú. Planta Med. doi: 10.1055/s-0031-1282361 Google Scholar
  143. Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 14:1965–1975PubMedGoogle Scholar
  144. Sakhanokho HF, Sampson BJ, Tabanca N, Wedge DE, Demirci B, Baser KHC, Bernier UR, Tsikolia M, Agramonte NM, Becnel JJ, Chen J, Rajasekaran K, Spiers JM (2013) Chemical composition, antifungal and insecticidal activities of Hedychium essential oils. Molecules. doi: 10.3390/molecules18044308 PubMedGoogle Scholar
  145. Santiago GMP, Lemos TLG, Pessoa ODL et al (2006) Larvicidal activity against Aedes aegypti L. (Diptera: Culicidae) of essential oils of Lippia species from Brazil. Nat Prod Commun 1:573–576Google Scholar
  146. Santos RP, Nunes EP, Nascimento RF, Santiago GMP, Menezes GHA, Silveira ER, Pessoa ODL (2006) Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the northeast of Brazil. J Braz Chem Soc 17:1027–1030Google Scholar
  147. Santos HS, Santiago GMP, Oliveira JPP, Arriaga AMC, Marques DD, Lemos TLG (2007) Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton zehntneri. Nat Prod Commun 2:1233–1236Google Scholar
  148. Santos SRL, Melo MA, Cardoso AV, Santos RLC, Sousa DP, Cavalcanti SCH (2011) Structure–activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere. doi: 10.1016/j.chemosphere.2011.02.018 Google Scholar
  149. Santos SRL, Silva VB, Melo MA, Barbosa JDF, Santos RLC, Sousa DP, Cavalcanti SCH (2010) Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes, and related Compounds in Aedes aegypti larvae. Vector-Borne Zoonotic Dis. doi: 10.1089/vbz.2009.0158 Google Scholar
  150. Santos GKN, Dutra KA, Barros RA, Câmara CAG, Lira DD, Gusmão NB, Navarro DMAF (2012) Essential oils from Alpinia purpurata (Zingiberaceae): chemical composition, oviposition deterrence, larvicidal and antibacterial activity. Ind Crops Prod. doi: 10.1016/j.indcrop.2012.03.020 Google Scholar
  151. Satyan RS, Malarvannan S, Eganathan P, Rajalakshmi S, Parida A (2009) Growth inhibitory activity of fatty acid methyl esters in the whole seed oil of Madagascar periwinkle (Apocyanaceae) against Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol. doi: 10.1603/029.102.0344 PubMedGoogle Scholar
  152. Scotti L, Scotti MT, Silva VB, Santos SRL, Cavalcanti SCH, Mendonça-Jr FJB (2013) Chemometric studies on potential larvicidal compounds against Aedes aegypti. Med Chem 9:1–10Google Scholar
  153. Senthilkumar A, Jayaraman M, Venkatesalu V (2013) Chemical constituents and larvicidal potential of Feronia limonia leaf essential oil against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Parasitol Res. doi: 10.1007/s00436-012-3188-z PubMedGoogle Scholar
  154. Seo SM, Park HM, Park IK (2012) Larvicidal activity of ajowan (Trachyspermum ammi) and Peru balsam (Myroxylon pereira) oils and blends of their constituents against mosquito, Aedes aegypti, acute toxicity on water flea, Daphnia magna, and aqueous residue. J Agric Food Chem. doi: 10.1021/jf301296d Google Scholar
  155. Shaalan EAS, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour AH (2006) Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed 23:180–185Google Scholar
  156. Shaalan EAS, Canyon D, Younes MWF, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int. doi: 10.1016/j.envint.2005.03.003 PubMedGoogle Scholar
  157. Silva AG, Almeida DL, Ronchi SN, Bento AC, Scherer R, Ramos AC, Cruz ZMA (2010) The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762). Parasites Vectors. doi: 10.1186/1756-3305-3-79 Google Scholar
  158. Silva ALS (2012) Caracterização e avaliação da atividade larvicida do óleo essencial do Zingiger officinale Rocoe (Gengibre) frente ao mosquito Aedes aegypti. Dissertation, Federal University of MaranhãoGoogle Scholar
  159. Silva PC, Navarro DM, Dutra K, Santos GK (2013) Composition, larvicidal, and deterrence oviposition activity of Etlingera elatior essential oils against Aedes aegypti L. (Diptera: Culicidae). Abstracts of Papers of 245th ACS National Meeting & Exposition AGFD-215.Google Scholar
  160. Silva WJ (2006) Atividade larvicida do óleo essencial de plantas existentes no estado de Sergipe contra Aedes aegypti Linn. Dissertation, Federal University of SergipeGoogle Scholar
  161. Silva WJ, Dória GAA, Maia RT, Nunes RS, Carvalho GA, Blank AF, Alves PB, Marçal RM, Cavalcanti SCH (2008) Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol. doi: 10.1016/j.biortech.2007.05.064 Google Scholar
  162. Simas NK, Lima EC, Conceição SR, Kuster RM, Oliveira-Filho AM (2004) Produtos naturais para o controle da transmissão da dengue—atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quim Nova 27:46–49Google Scholar
  163. Souza LGS, Almeida MCS, Monte FJQ, Santiago GMP, Braz-Filho R, Lemos TLG, Gomes CL, Nascimento RF (2012a) Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil. Quim Nova 35:2258–2262Google Scholar
  164. Souza TM, Cunha AP, Farias DF, Machado LK, Morais SM, Ricardo NMPS, Carvalho AFU (2012b) Insecticidal activity against Aedes aegypti of m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds. Pest Manag Sci. doi: 10.1002/ps.3316 PubMedGoogle Scholar
  165. Sukumar K, Perich MJ, Boobar LW (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237PubMedGoogle Scholar
  166. Sun L, Dong H, Guo C, Qian J, Sun J, Ma L, Zhu C (2006) Larvicidal activity of extracts of Ginkgo biloba exocarp for three different strains of Culex pipiens pallens. J Med Entomol. doi: 10.1603/0022-2585(2006)043[0258:LAOEOG]2.0.CO;2 PubMedGoogle Scholar
  167. Tabanca N, Özek G, Ali A, Duran A, Hamzaoğlu E, Baser KHC, Khan IA (2012a) Chemical composition of Heracleum pastinacifolium subsp. transcaucasicum and subsp. incanum essential oils, and their biting deterrent and larvicidal activity against Aedes aegypti. Planta Med. doi: 10.1055/s-0032-1307597 Google Scholar
  168. Tabanca N, Demirci B, Kiyan HT, Ali A, Bernier UR, Wedge DE, Khan IA, Baser KHC (2012b) Repellent and larvicidal activity of Ruta graveolens essential oil and its major individual constituents against Aedes aegypti. Planta Med. doi: 10.1055/s-0032-1307598 Google Scholar
  169. Teles RM (2009) Caracterização química, avaliação térmica e atividade larvicida frente ao Aedes aegypti do óleo essencial da Aniba duckei Kostermans. Dissertation, Federal University of ParaíbaGoogle Scholar
  170. Tennyson S, Samraj DA, Jeyasundar D, Chalieu K (2013) Larvicidal efficacy of plant oils against the dengue vector Aedes aegypti (L.) (Diptera: Culicidae). Middle-East J Sci Res. doi: 10.5829/idosi.mejsr.2013.13.1.64107 Google Scholar
  171. Thanigaivel A, Chandrasekaran R, Revathi K, Nisha S, Sathish-Narayanan S, Kirubakaran SA, Senthil-Nathan S (2012) Larvicidal efficacy of Adhatoda vasica (L.) Nees against the bancroftian filariasis vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. in in vitro condition. Parasitol Res. doi: 10.1007/s00436-011-2728-2 PubMedGoogle Scholar
  172. Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. Jpn J Infect Dis 57:176–177PubMedGoogle Scholar
  173. Tikar SN, Mendki MJ, Chandel K, Parashar BD, Prakash S (2008) Susceptibility of immature stages of Aedes (Stegomyia) aegypti; vector of dengue and chikungunya to insecticides from India. Parasitol Res. doi: 10.1007/s00436-007-0848-5 PubMedGoogle Scholar
  174. Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vect Borne Dis 44:198–204Google Scholar
  175. Torres MCM, Assunção JC, Santiago GMP et al (2008) Larvicidal and nematicidal activities of the leaf essential oil of Croton regelianus. Chem Biodivers 5:2724–2728PubMedGoogle Scholar
  176. Trindade FTT, Stabeli RG, Pereira AA, Facundo VA, Silva AA (2013) Copaifera multijuga ethanolic extracts, oil-resin, and its derivatives display larvicidal activity against Anopheles darling and Aedes aegypti (Diptera: Culicidae). Braz J Pharmacogn. doi: 10.1590/S0102-695X2013005000038 Google Scholar
  177. United States Environmental Protection Agency (EPA) (1999) Citronella (oil of citronella) (021901) fact sheet. Accessed 2 Dec 2012
  178. Unnati S, Ripal S, Sanjeev A, Niyati A (2013) Novel anticancer agents from plant sources. Chin J Nat Med 11:16–23Google Scholar
  179. Vila R, Santana AI, Pérez-Rosés R et al (2010) Composition and biological activity of the essential oil from leaves of Plinia cerrocampanensis, a new source of α-bisabolol. Bioresour Technol. doi: 10.1016/j.biortech.2009.11.021 Google Scholar
  180. Wahyuni D (2012) Larvicidal activity of essential oils of Piper betle from the Indonesian plants against Aedes aegypti L. J Appl Environ Biol Sci 2:249–254Google Scholar
  181. Waliwitiya R, Kennedy CJ, Lowenberger CA (2009) Larvicidal and oviposition-altering activity of monoterpenoids, trans-anethole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag Sci. doi: 10.1002/ps.1675 PubMedGoogle Scholar
  182. Warikoo R, Wahab N, Kumar S (2011) Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector. Aedes aegypti L. Parasitol Res. doi: 10.1007/s00436-011-2355-y Google Scholar
  183. Warikoo R, Kumar S (2013) Impact of Argemone mexicana extracts on the cidal, morphological, and behavioral response of dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-013-3528-7 PubMedGoogle Scholar
  184. WHO (1992) Vector resistance to pesticides: fifteenth report of the WHO expert committee on vector biology and control. WHO Technical Report Series 818, GenevaGoogle Scholar
  185. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO, GenevaGoogle Scholar
  186. WHO (2006) Pesticides and their application for the control of vectors and pests of public health importance, 6th edn. WHO, GenevaGoogle Scholar
  187. WHO (2009a) Dengue: guidelines for diagnosis, treatment, prevention and control. WHO, GenevaGoogle Scholar
  188. WHO (2009b) Temephos in drinking-water: use for vector control in drinking-water sources and containers. WHO, GenevaGoogle Scholar
  189. WHO (2012) Impact of dengue. Global alert and response (GAR). Accessed 14 Apr 2012
  190. WHO (2012b) Global strategy for dengue prevention and control 2012–2020. WHO, GenevaGoogle Scholar
  191. WHO (2012) Dengue and severe dengue. Factsheet no. 117. Accessed 15 Apr 2012
  192. WHO ((2012) Handbook for integrated vector management. WHO, GenevaGoogle Scholar
  193. WHO (2012) Recommended compounds and formulations for control of mosquito larvae. WHOPES. Accessed 28 Sep 2012
  194. Wood A (2012) Compendium of pesticide common names: insecticides. Accessed 16 Dec 2012
  195. Zhu J, Zeng X, O'neal M, Schultz G, Tucker B, Coats J, Bartholomay L, Xue RD (2006) Mosquito larvicidal activity of botanical-based mosquito repellents. J Am Mosq Control Assoc. doi: 10.2987/8756-971X%282008%2924%5B161%3AMLAOBM%5D2.0.CO%3B2 PubMedGoogle Scholar
  196. Zoubiri S, Baaliouamer A (2011) Potentiality of plants as source of insecticide principles. J Saudi Chem Soc. doi: 10.1016/j.jscs.2011.11.015 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clarice Noleto Dias
    • 1
  • Denise Fernandes Coutinho Moraes
    • 2
  1. 1.Natural Products and Synthetic BioactiveFederal University of ParaíbaJoão PessoaBrazil
  2. 2.Pharmacy DepartmentFederal University of MaranhãoSão LuísBrazil

Personalised recommendations