Advertisement

Parasitology Research

, Volume 113, Issue 1, pp 359–365 | Cite as

Age-related detection and molecular characterization of Cryptosporidium suis and Cryptosporidium scrofarum in pre- and post-weaned piglets and adult pigs in Japan

  • Takeshi Yui
  • Toshiyuki Nakajima
  • Norishige Yamamoto
  • Marina Kon
  • Niichiro Abe
  • Makoto MatsubayashiEmail author
  • Tomoyuki Shibahara
Original Paper

Abstract

We investigated the distribution of Cryptosporidium in pigs in Japan by immunofluorescence staining of fecal samples and characterization of isolates by multilocus sequencing. The 344 animals sampled on eight farms included pre-weaned piglets (<1 month old; n = 55), weaned piglets (1–2 months old; n = 65), finished pigs (2–4 months old, n = 105) and of 4–6 months old (n = 67), sows (n = 36), and boars (n = 16). Average prevalence of Cryptosporidium on farms was 32.6 %, ranging from 4.9 to 58.1 %, decreasing with animal age (prevalences of <1 month old, 1–2 months old, 2–4 months old, 4–6 months old, sows, and boars were 27.3, 47.7, 41.9, 22.4, 11.1, 18.8 %, respectively). Piglets (<1 and 1–2 months old) showing signs of diarrhea shed relatively more oocysts (5.28 in average log scale of oocysts per gram) in feces than piglets with normal or loose stools (those of 4.90). Thirty seven successful sequencing of the 18S ribosomal RNA gene among 62 examined samples revealed that all of the identified isolates were Cryptosporidium suis or Cryptosporidium scrofarum, which are generally specific to pigs, and that other species, such as zoonotic Cryptosporidium parvum, were absent. Interestingly, C. suis was frequently found in piglets younger than 2 months old, while C. scrofarum infection was more prevalent in older pigs which also showed increased prevalence of mixed C. suis and C. scrofarum infections. Sequencing of actin gene loci revealed the existence of variants of both Cryptosporidium species in pigs in Japan. Although the number of pigs examined in this study was relatively low, our results suggest that Cryptosporidium infection is widespread among pigs in Japan. In addition, the possibility of age-related specificity and pathogenicity in pig infections is also suggested.

Keywords

Cryptosporidiosis Cryptosporidium Oocyst Cryptosporidium Infection Cryptosporidium Species Saitama Prefecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe N, Kimata I, Iseki M (2002) Identification of genotypes of Cryptosporidium parvum isolates from a patient and a dog in Japan. J Vet Med Sci 64:165–168PubMedCrossRefGoogle Scholar
  2. Amer S, Honma H, Ikarashi M, Oishi R, Endo M, Otawa K, Nakai Y (2009) The first detection of Cryptosporidium deer-like genotype in cattle in Japan. Parasitol Res 104:745–752PubMedCrossRefGoogle Scholar
  3. An SF, Fleming KA (1991) Removal of inhibitor(s) of the polymerase chain reaction from formalin fixed, paraffin wax embedded tissues. J Clin Pathol 44:924–927PubMedCrossRefGoogle Scholar
  4. Budu-Amoako E, Greenwood SJ, Dixon BR, Barkema HW, Hurnik D, Estey C, McClure JT (2012) Occurrence of Giardia and Cryptosporidium in pigs on Prince Edward Island, Canada. Vet Parasitol 184:18–24PubMedCrossRefGoogle Scholar
  5. Fayer R (2010) Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol 124:90–97PubMedCrossRefGoogle Scholar
  6. Hikosaka K, Nakai Y (2005) A novel genotype of Cryptosporidium muris from large Japanese field mice, Apodemus speciosus. Parasitol Res 97:373–379PubMedCrossRefGoogle Scholar
  7. Izumiyama S, Furukawa I, Kuroki T, Yamai S, Sugiyama H, Yagita K, Endo T (2001) Prevalence of Cryptosporidium parvum infections in weaned piglets and fattening porkers in Kanagawa Prefecture, Japan. Jpn J Infect Dis 54:23–26PubMedGoogle Scholar
  8. Jeníková M, Němejc K, Sak B, Květoňová D, Kváč M (2011) New view on the age-specificity of pig Cryptosporidium by species-specific primers for distinguishing Cryptosporidium suis and Cryptosporidium pig genotype II. Vet Parasitol 176:120–125PubMedCrossRefGoogle Scholar
  9. Karanis P, Eiji T, Palomino L, Boonrod K, Plutzer J, Ongerth J, Igarashi I (2010) First description of Cryptosporidium bovis in Japan and diagnosis and genotyping of Cryptosporidium spp. in diarrheic pre-weaned calves in Hokkaido. Vet Parasitol 169:387–390PubMedCrossRefGoogle Scholar
  10. Koyama Y, Satoh M, Maekawa K, Hikosaka K, Nakai Y (2005) Isolation of Cryptosporidium andersoni Kawatabi type in a slaughterhouse in the northern island of Japan. Vet Parasitol 130:323–326PubMedCrossRefGoogle Scholar
  11. Kvác M, Kouba M, Vítovec J (2006) Age-related and housing-dependence of Cryptosporidium infection of calves from dairy and beef herds in South Bohemia, Czech Republic. Vet Parasitol 137:202–209PubMedCrossRefGoogle Scholar
  12. Kváč M, Hanzlíková D, Sak B, Kvetonová D (2009) Prevalence and age-related infection of Cryptosporidium suis, C. muris and Cryptosporidium pig genotype II in pigs on a farm complex in the Czech Republic. Vet Parasitol 160:319–322PubMedCrossRefGoogle Scholar
  13. Kváč M, Kestřánová M, Pinková M, Květoňová D, Kalinová J, Wagnerová P, Kotková M, Vítovec J, Ditrich O, McEvoy J, Stenger B, Sak B (2013) Cryptosporidium scrofarum n. sp. (Apicomplexa: Cryptosporidiidae) in domestic pigs (Sus scrofa). Vet Parasitol 191:218–227PubMedCrossRefGoogle Scholar
  14. Langkjær RB, Vigre H, Enemark HL, Maddox-Hyttel C (2007) Molecular and phylogenetic characterization of Cryptosporidium and Giardia from pigs and cattle in Denmark. Parasitology 134:339–350PubMedCrossRefGoogle Scholar
  15. Maddox-Hyttel C, Langkjaer RB, Enemark HL, Vigre H (2006) Cryptosporidium and Giardia in different age groups of Danish cattle and pigs—occurrence and management associated risk factors. Vet Parasitol 141:48–59PubMedCrossRefGoogle Scholar
  16. Matsubayashi M, Nagano S, Kita T, Narushima T, Kimata I, Iseki M, Hajiri T, Tani H, Sasai K, Baba E (2008) Genetical survey of novel type of Cryptosporidium andersoni in cattle in Japan. Vet Parasitol 158:44–50PubMedCrossRefGoogle Scholar
  17. Murakoshi F, Tozawa Y, Inomata A, Horimoto T, Wada Y, Kato K (2013) Molecular characterization of Cryptosporidium isolates from calves in Ishikari District, Hokkaido, Japan. J Vet Med Sci 75:837–840PubMedCrossRefGoogle Scholar
  18. Nakai Y, Hikosaka K, Sato M, Sasaki T, Kaneta Y, Okazaki N (2004) Detection of Cryptosporidium muris type oocysts from beef cattle in a farm and from domestic and wild animals in and around the farm. J Vet Med Sci 66:983–984PubMedCrossRefGoogle Scholar
  19. Němejc K, Sak B, Květoňová D, Kernerová N, Rost M, Cama VA, Kváč M (2013) Occurrence of Cryptosporidium suis and Cryptosporidium scrofarum on commercial swine farms in the Czech Republic and its associations with age and husbandry practices. Parasitol Res 112:1143–1154PubMedCrossRefGoogle Scholar
  20. Nguyen ST, Honma H, Geurden T, Ikarash M, Fukuda Y, Huynh VV, Nguyen DT, Nakai Y (2012) Prevalence and risk factors associated with Cryptosporidium oocysts shedding in pigs in Central Vietnam. Res Vet Sci 93:848–852PubMedCrossRefGoogle Scholar
  21. Nguyen ST, Fukuda Y, Tada C, Sato R, Huynh VV, Nguyen DT, Nakai Y (2013) Molecular characterization of Cryptosporidium in pigs in central Vietnam. Parasitol Res 112:187–192PubMedCrossRefGoogle Scholar
  22. Ritchie LS (1948) An ether sedimentation technique for routine stool examinations. Bull US Army Med Dept 8:326Google Scholar
  23. Ryan UM, Samarasinghe B, Read C, Buddle JR, Robertson ID, Thompson RC (2003) Identification of a novel Cryptosporidium genotype in pigs. Appl Environ Microbiol 69:3970–3974PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ryan UM, Monis P, Enemark HL, Sulaiman I, Samarasinghe B, Read C, Buddle R, Robertson I, Zhou L, Thompson RC, Xiao L (2004) Cryptosporidium suis n. sp. (Apicomplexa: Cryptosporidiidae) in pigs (Sus scrofa). J Parasitol 90:769–773PubMedCrossRefGoogle Scholar
  25. Santín M, Trout JM, Xiao L, Zhou L, Greiner E, Fayer R (2004) Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy calves. Vet Parasitol 122:103–117PubMedCrossRefGoogle Scholar
  26. Satoh M, Matsubara-Nihei Y, Sasaki T, Nakai Y (2006) Characterization of Cryptosporidium canis isolated in Japan. Parasitol Res 99:746–748PubMedCrossRefGoogle Scholar
  27. Smith HV, Cacciò SM, Tait A, McLauchlin J, Thompson RC (2006) Tools for investigating the environmental transmission of Cryptosporidium and Giardia infections in humans. Trends Parasitol 22:160–167PubMedCrossRefGoogle Scholar
  28. Suárez-Luengas L, Clavel A, Quílez J, Goñi-Cepero MP, Torres E, Sánchez-Acedo C, del Cacho E (2007) Molecular characterization of Cryptosporidium isolates from pigs in Zaragoza (northeastern Spain). Vet Parasitol 148:231–235PubMedCrossRefGoogle Scholar
  29. Sulaiman IM, Lal AA, Xiao L (2002) Molecular phylogeny and evolutionary relationships of Cryptosporidium parasites at the actin locus. J Parasitol 88:388–394PubMedGoogle Scholar
  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  31. Waldman E, Tzipori S, Forsyth JR (1986) Separation of Cryptosporidium species oocysts from feces by using a percoll discontinuous density gradient. J Clin Microbiol 23:199–200PubMedCentralPubMedGoogle Scholar
  32. Wang R, Qiu S, Jian F, Zhang S, Shen Y, Zhang L, Ning C, Cao J, Qi M, Xiao L (2010) Prevalence and molecular identification of Cryptosporidium spp. in pigs in Henan, China. Parasitol Res 107:1489–1494PubMedCrossRefGoogle Scholar
  33. Wieler LH, Ilieff A, Herbst W, Bauer C, Vieler E, Bauerfeind R, Failing K, Klös H, Wengert D, Baljer G, Zahner H (2001) Prevalence of enteropathogens in suckling and weaned piglets with diarrhoea in southern Germany. J Vet Med B Infect Dis Vet Public Health 48:151–159PubMedCrossRefGoogle Scholar
  34. Xiao L, Escalante L, Yang C, Sulaiman I, Escalante AA, Montali RJ, Fayer R, Lal AA (1999) Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl Environ Microbiol 65:1578–1583PubMedCentralPubMedGoogle Scholar
  35. Yin JH, Yuan ZY, Cai HX, Shen YJ, Jiang YY, Zhang J, Wang YJ, Cao JP (2013) Age-related infection with Cryptosporidium species and genotype in pigs in China. Biomed Environ Sci 26:492–495PubMedGoogle Scholar
  36. Yoshiuchi R, Matsubayashi M, Kimata I, Furuya M, Tani H, Sasai K (2010) Survey and molecular characterization of Cryptosporidium and Giardia spp. in owned companion animal, dogs and cats, in Japan. Vet Parasitol 174:313–316PubMedCrossRefGoogle Scholar
  37. Yui T, Shibahara T, Kon M, Yamamoto N, Kameda M, Taniyama H (2013) Epidemiological studies on intestinal protozoa in pigs in Saitama, Japan. Japan Agricultural Research Quarterly. In pressGoogle Scholar
  38. Zintl A, Neville D, Maguire D, Fanning S, Mulcahy G, Smith HV, De Waal T (2007) Prevalence of Cryptosporidium species in intensively farmed pigs in Ireland. Parasitology 134:1575–1582PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takeshi Yui
    • 1
  • Toshiyuki Nakajima
    • 2
  • Norishige Yamamoto
    • 3
  • Marina Kon
    • 3
  • Niichiro Abe
    • 4
  • Makoto Matsubayashi
    • 5
    Email author
  • Tomoyuki Shibahara
    • 5
  1. 1.Department of Pathological AppraisalChuo Livestock Hygiene Service Center, Saitama PrefectureSaitamaJapan
  2. 2.Department of Agriculture and Forestry, Saitama PrefectureSaitamaJapan
  3. 3.Department of Clinical MicrobiologySaitama Prefectural Institute of Public HealthSaitamaJapan
  4. 4.Department of MicrobiologyOsaka City Institute of Public Health and Environmental SciencesOsakaJapan
  5. 5.National Institute of Animal HealthNational Agricultural and Food Research OrganizationTsukubaJapan

Personalised recommendations