Parasitology Research

, Volume 113, Issue 1, pp 285–304 | Cite as

Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells

  • Maria R. Garcia-Silva
  • Roberta Ferreira Cura das Neves
  • Florencia Cabrera-Cabrera
  • Julia Sanguinetti
  • Lia C. Medeiros
  • Carlos Robello
  • Hugo Naya
  • Tamara Fernandez-Calero
  • Thais Souto-Padron
  • Wanderley de Souza
  • Alfonso Cayota
Original Paper


The protozoan parasite Trypanosoma cruzi has a complex life cycle characterized by intracellular and extracellular forms alternating between invertebrate and mammals. To cope with these changing environments, T. cruzi undergoes rapid changes in gene expression, which are achieved essentially at the posttranscriptional level. At present, expanding families of small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, T. cruzi lacks canonical small RNA pathways. In a recent work, we reported the presence of alternate small RNA pathways in T. cruzi mainly represented by a homogeneous population of tRNA-derived small RNAs (tsRNAs). In T. cruzi epimastigotes submitted to nutrient starvation, tsRNAs colocalized with an argonaute protein distinctive of trypanosomatids (TcPIWI-tryp) and were recruited to particular cytoplasmic granules. Using epifluorescence and electronic microscopy, we observed that tsRNAs and the TcPIWI-tryp protein were recruited mainly to reservosomes and other intracellular vesicles including endosome-like vesicles and vesicular structures resembling the Golgi complex. These data suggested that, in T. cruzi, tsRNA biogenesis is probably part of endocytic/exocytic routes. We also demonstrated that epimastigotes submitted to nutrient starvation shed high levels of vesicles to the extracellular medium, which carry small tRNAs and TcPIWI-tryp proteins as cargo. At least a fraction of extracellular vesicle cargo was transferred between parasites and to mammalian susceptible cells. Our data afford experimental evidence, indicating that extracellular vesicles shed by T. cruzi promote not only life cycle transition of epimastigotes to trypomastigote forms but also infection susceptibility of mammalian cells


Small RNAs K562 Cell Vero Cell Secrete Vesicle Small Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the National Agency of Research and Innovation (ANII, Uruguay), Institut Pasteur de Montevideo (Uruguay) and CNPq (Prosul), CAPEs and FAPERJ from Brazil.

Supplementary material

436_2013_3655_Fig10_ESM.jpg (89 kb)
Figure S1

Time-course analysis of tRNA halves accumulation in epimastigotes submitted to nutritional stress. Epimastigotes under optimal growth (unstressed), stressed for 48 h (sE48) and trypomastigotes were fixed and hybridized with probes specific for tRNAGlu 5′ halves (red). Samples were counterstained with DAPI 4,6-diamidino-2-phenylindole (DAPI) at 1 mg ml−1 and merged images were obtained by superimposing the indicated images files. (JPEG 88 kb)

436_2013_3655_MOESM1_ESM.tif (1.7 mb)
High Resolution Image (TIFF 1780 kb)
436_2013_3655_Fig11_ESM.jpg (106 kb)
Figure S2

T. cruzi epimastigotes submitted to nutrient starvation. Epimastigotes at the late-stationary phase of growth in LIT medium were washed and resuspended in serum-free RPMI-1640 medium and further cultured for 48 h (sE48). a Visualization of sE48 parasites by differential interference contrast microscopy. b HeLa cells after 2 days of infection with sE48 parasites where DAPI stained amastigotes are indicated by arrows. c Percentage of trypomastigotes overtime in different culture conditions. Normal growing parasites in LIT medium (LIT), epimastigotes at the late-stationary phase in LIT medium (stationary phase) and epimastigotes submitted to nutrient starvation in RPMI (RPMI). (JPEG 106 kb)

436_2013_3655_MOESM2_ESM.tif (3.6 mb)
High Resolution Image (TIFF 3717 kb)
436_2013_3655_Fig12_ESM.jpg (113 kb)
Figure S3

Reactivity and specificity of TcPIWI-tryp mRNA probes used in FISH assays. Fixed parasites were hybridized for TcPIWI-tryp mRNA with antisense (positive control) or sense (negative control) oligoprobes conjugated to fluorescein isothiocyanate (FITC). Samples were counterstained with DAPI 4,6-diamidino-2-phenylindole (DAPI) at 1 mg ml−1. Merged images were obtained by superimposing the indicated images files. (JPEG 113 kb)

436_2013_3655_MOESM3_ESM.tif (3.5 mb)
High Resolution Image (TIFF 3558 kb)


  1. Allen CL, Goulding D, Field MC (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. Embo J 22(19):4991–5002PubMedCrossRefGoogle Scholar
  2. Aparicio IM, Scharfstein J, Lima AP (2004) A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infect Immun 72(10):5892–5902PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008PubMedCentralPubMedCrossRefGoogle Scholar
  4. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ Jr, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38(Database issue):D457–D462PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S (2003) The trypanosomiases. Lancet 362(9394):1469–1480PubMedCrossRefGoogle Scholar
  6. Barrias ES, Reignault LC, De Souza W, Carvalho TM (2010) Dynasore, a dynamin inhibitor, inhibits Trypanosoma cruzi entry into peritoneal macrophages. PLoS One 5(1):e7764PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC (2013) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12(2):883–897PubMedCrossRefGoogle Scholar
  8. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848PubMedCrossRefGoogle Scholar
  9. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1(1):98–110PubMedCentralPubMedGoogle Scholar
  10. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50(2):81–99PubMedCentralPubMedCrossRefGoogle Scholar
  11. Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156(2):93–101PubMedCrossRefGoogle Scholar
  12. Cocucci E, Meldolesi J (2011) Ectosomes. Curr Biol 21(23):R940–R941PubMedCrossRefGoogle Scholar
  13. Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. Rna 15(12):2147–2160PubMedCrossRefGoogle Scholar
  14. Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16(3):315–327PubMedCrossRefGoogle Scholar
  15. Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles Mde N, Goldenberg S (1988) Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz 83(1):123–133PubMedCrossRefGoogle Scholar
  16. Correa JR, Atella GC, Menna-Barreto RS, Soares MJ (2007) Clathrin in Trypanosoma cruzi: in silico gene identification, isolation, and localization of protein expression sites. J Eukaryot Microbiol 54(3):297–302PubMedCrossRefGoogle Scholar
  17. Cunha-e-Silva N, Sant’Anna C, Pereira MG, Porto-Carreiro I, Jeovanio AL, de Souza W (2006) Reservosomes: multipurpose organelles? Parasitol Res 99(4):325–327PubMedCrossRefGoogle Scholar
  18. de Souza W (2008) An introduction to the structural organization of parasitic protozoa. Curr Pharm Des 14(9):822–838PubMedCrossRefGoogle Scholar
  19. de Souza W, de Carvalho TU, Benchimol M, Chiari E (1978) Trypanosoma cruzi: ultrastructural, cytochemical and freeze-fracture studies of protein uptake. Exp Parasitol 45(1):101–115PubMedCrossRefGoogle Scholar
  20. de Souza W, Sant’Anna C, Cunha-e-Silva NL (2009) Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem 44(2):67–124PubMedCrossRefGoogle Scholar
  21. Deborde S, Perret E, Gravotta D, Deora A, Salvarezza S, Schreiner R, Rodriguez-Boulan E (2008) Clathrin is a key regulator of basolateral polarity. Nature 452(7188):719–723PubMedCrossRefGoogle Scholar
  22. Elbarbary RA, Takaku H, Uchiumi N, Tamiya H, Abe M, Nishida H, Nashimoto M (2009a) Human cytosolic tRNase ZL can downregulate gene expression through miRNA. FEBS Lett 583(19):3241–3246PubMedCrossRefGoogle Scholar
  23. Elbarbary RA, Takaku H, Uchiumi N, Tamiya H, Abe M, Takahashi M, Nishida H, Nashimoto M (2009b) Modulation of gene expression by human cytosolic tRNase Z(L) through 5′-half-tRNA. PLoS One 4(6):e5908PubMedCentralPubMedCrossRefGoogle Scholar
  24. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309(5733):409–415PubMedCrossRefGoogle Scholar
  25. Figueiredo RC, Rosa DS, Soares MJ (2000) Differentiation of Trypanosoma cruzi epimastigotes: metacyclogenesis and adhesion to substrate are triggered by nutritional stress. J Parasitol 86(6):1213–1218PubMedGoogle Scholar
  26. Franzen O, Arner E, Ferella M, Nilsson D, Respuela P, Carninci P, Hayashizaki Y, Aslund L, Andersson B, Daub CO (2011) The short non-coding transcriptome of the protozoan parasite Trypanosoma cruzi. PLoS Negl Trop Dis 5(8):e1283PubMedCentralPubMedCrossRefGoogle Scholar
  27. Frasch AC (2000) Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol Today 16(7):282–286PubMedCrossRefGoogle Scholar
  28. Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2009) Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583(2):437–442PubMedCrossRefGoogle Scholar
  29. Garcia-Silva MR, Tosar JP, Frugier M, Pantano S, Bonilla B, Esteban L, Serra E, Rovira C, Robello C, Cayota A (2010a) Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. Gene 466(1–2):26–35PubMedCrossRefGoogle Scholar
  30. Garcia-Silva MR, Frugier M, Tosar JP, Correa-Dominguez A, Ronalte-Alves L, Parodi-Talice A, Rovira C, Robello C, Goldenberg S, Cayota A (2010b) A population of tRNA-derived small RNAs is actively produced in Trypanosoma cruzi and recruited to specific cytoplasmic granules. Mol Biochem Parasitol 171(2):64–73PubMedCrossRefGoogle Scholar
  31. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108PubMedCentralPubMedCrossRefGoogle Scholar
  32. Gilbert C, Schaack S, Pace JK 2nd, Brindley PJ, Feschotte C (2010) A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464(7293):1347–1350PubMedCentralPubMedCrossRefGoogle Scholar
  33. Goncalves MF, Umezawa ES, Katzin AM, de Souza W, Alves MJ, Zingales B, Colli W (1991) Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp Parasitol 72(1):43–53PubMedCrossRefGoogle Scholar
  34. Haiser HJ, Karginov FV, Hannon GJ, Elliot MA (2008) Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res 36(3):732–741PubMedCentralPubMedCrossRefGoogle Scholar
  35. Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. Rna 16(4):673–695PubMedCrossRefGoogle Scholar
  36. Hecht MM, Nitz N, Araujo PF, Sousa AO, Rosa Ade C, Gomes DA, Leonardecz E, Teixeira AR (2010) Inheritance of DNA transferred from American trypanosomes to human hosts. PLoS One 5(2):e9181PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hernandez R, Cevallos AM, Nepomuceno-Mejia T, Lopez-Villasenor I (2012) Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. Parasitol Res 111(2):509–514PubMedCrossRefGoogle Scholar
  38. Jochl C, Rederstorff M, Hertel J, Stadler PF, Hofacker IL, Schrettl M, Haas H, Huttenhofer A (2008) Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 36(8):2677–2689PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, Fukuda S, Daub CO, Kai C, Kawai J, Yasuda J, Carninci P, Hayashizaki Y (2008) Hidden layers of human small RNAs. BMC Genomics 9:157PubMedCentralPubMedCrossRefGoogle Scholar
  40. Keyel PA, Watkins SC, Traub LM (2004) Endocytic adaptor molecules reveal an endosomal population of clathrin by total internal reflection fluorescence microscopy. J Biol Chem 279(13):13190–13204PubMedCrossRefGoogle Scholar
  41. Lee SR, Collins K (2005) Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 280(52):42744–42749PubMedCrossRefGoogle Scholar
  42. Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649PubMedCrossRefGoogle Scholar
  43. Ley V, Andrews NW, Robbins ES, Nussenzweig V (1988) Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells. J Exp Med 168(2):649–659PubMedCrossRefGoogle Scholar
  44. Li Y, Zhou H (2009) tRNAs as regulators in gene expression. Sci China C Life Sci 52(3):245–252PubMedCrossRefGoogle Scholar
  45. Li Y, Luo J, Zhou H, Liao JY, Ma LM, Chen YQ, Qu LH (2008) Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res 36(19):6048–6055PubMedCentralPubMedCrossRefGoogle Scholar
  46. Magdesian MH, Giordano R, Ulrich H, Juliano MA, Juliano L, Schumacher RI, Colli W, Alves MJ (2001) Infection by Trypanosoma cruzi. Identification of a parasite ligand and its host cell receptor. J Biol Chem 276(22):19382–19389PubMedCrossRefGoogle Scholar
  47. Malaga S, Yoshida N (2001) Targeted reduction in expression of Trypanosoma cruzi surface glycoprotein gp90 increases parasite infectivity. Infect Immun 69(1):353–359PubMedCentralPubMedCrossRefGoogle Scholar
  48. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920PubMedCrossRefGoogle Scholar
  49. Nakashima A, Takaku H, Shibata HS, Negishi Y, Takagi M, Tamura M, Nashimoto M (2007) Gene silencing by the tRNA maturase tRNase ZL under the direction of small-guide RNA. Gene Ther 14(1):78–85PubMedCrossRefGoogle Scholar
  50. Ogawa T, Tomita K, Ueda T, Watanabe K, Uozumi T, Masaki H (1999) A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science 283(5410):2097–2100PubMedCrossRefGoogle Scholar
  51. Porto-Carreiro I, Attias M, Miranda K, De Souza W, Cunha-e-Silva N (2000) Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. Eur J Cell Biol 79(11):858–869PubMedCrossRefGoogle Scholar
  52. Raiborg C, Bache KG, Mehlum A, Stang E, Stenmark H (2001) Hrs recruits clathrin to early endosomes. EMBO J 20(17):5008–5021PubMedCrossRefGoogle Scholar
  53. Reifur L, Garcia-Silva MR, Poubel SB, Alves LR, Arauco P, Buiar DK, Goldenberg S, Cayota A, Dallagiovanna B (2012) Distinct subcellular localization of tRNA-derived fragments in the infective metacyclic forms of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 107(6):816–819PubMedCrossRefGoogle Scholar
  54. Ruiz RC, Favoreto S Jr, Dorta ML, Oshiro ME, Ferreira AT, Manque PM, Yoshida N (1998) Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity. Biochem J 330(Pt 1):505–511PubMedGoogle Scholar
  55. Soares MJ (1999) The reservosome of Trypanosoma cruzi epimastigotes: an organelle of the endocytic pathway with a role on metacyclogenesis. Mem Inst Oswaldo Cruz 94(Suppl 1):139–141PubMedCrossRefGoogle Scholar
  56. Soares MJ (2006) Endocytic portals in Trypanosoma cruzi epimastigote forms. Parasitol Res 99(4):321–322PubMedCrossRefGoogle Scholar
  57. Soares MJ, de Souza W (1991) Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res 77(6):461–468PubMedCrossRefGoogle Scholar
  58. Souto-Padron T, Campetella OE, Cazzulo JJ, de Souza W (1990) Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction. J Cell Sci 96(Pt 3):485–490PubMedGoogle Scholar
  59. Souza W (2009) Structural organization of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 104(Suppl 1):89–100PubMedCrossRefGoogle Scholar
  60. Teixeira AR, Gomes C, Nitz N, Sousa AO, Alves RM, Guimaro MC, Cordeiro C, Bernal FM, Rosa AC, Hejnar J, Leonardecz E, Hecht MM (2011) Trypanosoma cruzi in the chicken model: Chagas-like heart disease in the absence of parasitism. PLoS Negl Trop Dis 5(3):e1000PubMedCentralPubMedCrossRefGoogle Scholar
  61. Thompson DM, Parker R (2009a) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185(1):43–50PubMedCrossRefGoogle Scholar
  62. Thompson DM, Parker R (2009b) Stressing out over tRNA cleavage. Cell 138(2):215–219PubMedCrossRefGoogle Scholar
  63. Torrecilhas AC, Schumacher RI, Alves MJ, Colli W (2012) Vesicles as carriers of virulence factors in parasitic protozoan diseases. Microbes Infect 14:1465–1474PubMedCrossRefGoogle Scholar
  64. Tribulatti MV, Mucci J, Van Rooijen N, Leguizamon MS, Campetella O (2005) The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun 73(1):201–207PubMedCentralPubMedCrossRefGoogle Scholar
  65. Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR, da Silva JS, Schumacher RI, de Souza W, NC ES, de Almeida Abrahamsohn I, Colli W, Manso Alves MJ (2009) Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 11(1):29–39PubMedCrossRefGoogle Scholar
  66. Ungewickell EJ, Hinrichsen L (2007) Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19(4):417–425PubMedCrossRefGoogle Scholar
  67. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  68. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433PubMedCentralPubMedCrossRefGoogle Scholar
  69. Wang K, Zhang S, Weber J, Baxter D, Galas DJ (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259PubMedCentralPubMedCrossRefGoogle Scholar
  70. Weatherly DB, Boehlke C, Tarleton RL (2009) Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 10:255PubMedCentralPubMedCrossRefGoogle Scholar
  71. Zhang S, Sun L, Kragler F (2009) The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 150(1):378–387PubMedCentralPubMedCrossRefGoogle Scholar
  72. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22(1):107–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maria R. Garcia-Silva
    • 1
  • Roberta Ferreira Cura das Neves
    • 2
  • Florencia Cabrera-Cabrera
    • 1
  • Julia Sanguinetti
    • 1
  • Lia C. Medeiros
    • 3
  • Carlos Robello
    • 4
  • Hugo Naya
    • 5
  • Tamara Fernandez-Calero
    • 5
  • Thais Souto-Padron
    • 2
  • Wanderley de Souza
    • 3
  • Alfonso Cayota
    • 1
    • 6
  1. 1.Functional Genomics UnitInstitut Pasteur de MontevideoMontevideoUruguay
  2. 2.Laboratório de Biologia Celular e Ultraestrutura, Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Molecular Biology UnitInstitut Pasteur de MontevideoMontevideoUruguay
  5. 5.Bioinformatics UnitInstitut Pasteur de MontevideoMontevideoUruguay
  6. 6.Department of MedicineFaculty of MedicineMontevideoUruguay

Personalised recommendations