Parasitology Research

, Volume 112, Issue 11, pp 3807–3816 | Cite as

Genotyping and phylogenetic analysis of Acanthamoeba isolates associated with keratitis

  • Arnaud Risler
  • Bénédicte Coupat-Goutaland
  • Michel PélandakisEmail author
Original Paper


We examined a partial SSU-rDNA sequence from 20 Acanthamoeba isolates associated with keratitis infections. The phylogenetic tree inferred from this partial sequence allowed to assign isolates to genotypes. Among the 20 isolates examined, 16 were found to be of the T4 genotype, 2 were T3, 1 was a T5, and 1 was a T2, confirming the predominance of T4 in infections. However, the study highlighted other genotypes more rarely associated with infections, particularly the T2 genotype. Our study is the second one to detect that this genotype is associated with keratitis. Additionally, the phylogenetic analyses showed five main emerging clusters, T4/T3/T11, T2/T6, T10/T12/T14, T13/T16, and T7/T8/T9/T17, regularly obtained whichever method was used. A similar branching pattern was found when the full rDNA sequence was investigated.


Bootstrap Support Keratitis Cabral Acanthamoeba Keratitis Sequence Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

436_2013_3572_MOESM1_ESM.pdf (139 kb)
Supplementary data 1 The 73 Acanthamoeba T4 sub-genotypes based on the alignment of the variable region of DF3. Gaps are represented by dashes. (PDF 138 kb)
436_2013_3572_MOESM2_ESM.docx (17 kb)
Supplementary data 2 Table 2 (b) Sequence AF019051 is associated in GenBank with strain “OX-1; CCAP:1501/3c”. However, two different sequences were linked to this strain although they belonged to the T2 genotype: the full sequence AF019051 (Stothard et al. 1998) and the partial sequence AF239298 deposited by Khan et al. (2002). (c) AF019064 and AY026242 sequences correspond to the strains ATCC 30137 and 30901, respectively. However, they are both referenced in the ATCC as “A. astronyxis (Ray & Hayes) Page.”; the strain ATCC30901 (T9) was identified as strain “Res20” (cf. ATCC website) to avoid any confusion. (d) In Stothard et al. (1998), the strain associated with the accession number U07417 is A. rhysodes Singh ATCC 30973 whereas the correct accession number of A. rhysodes Singh is AY351644. (DOCX 16 kb)


  1. Abe N, Kimata I (2010) Genotyping of Acanthamoeba isolates from corneal scrapings and contact lens cases of Acanthamoeba keratitis patients in Osaka, Japan. Jpn J Infect Dis 63:299–301PubMedGoogle Scholar
  2. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451. doi: 10.1111/j.1550-7408.2005.00053.x PubMedCrossRefGoogle Scholar
  3. Alsam S, Sik K, Stins M, Ortega A, Sissons J, Ahmed N (2003) Acanthamoeba interactions with human brain microvascular endothelial cells. Microb Pathog 35:235–241. doi: 10.1016/j.micpath.2003.07.001 PubMedCrossRefGoogle Scholar
  4. Atlan D, Coupat-Goutaland B, Risler A, Reyrolle M, Souchon M, Briolay J, Jarraud S, Doublet P, Pélandakis M (2012) Micriamoeba tesseris nov. gen. nov. sp.: a new taxon of free-living small-sized Amoebae non-permissive to virulent Legionellae. Protist 163:888–902. doi: 10.1016/j.protis.2012.04.006 PubMedCrossRefGoogle Scholar
  5. Booton GC, Kelly DJ, Chu Y, Seal DV, Houang E, Lam DSC, Byers TJ, Fuerst PA (2002) 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J Clin Microbiol 40:1621–1625. doi: 10.1128/JCM.40.5.1621 PubMedCrossRefGoogle Scholar
  6. Booton GC, Visvesvara GS, Byers TJ, Kelly DJ, Fuerst PA (2005) Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J Clin Microbiol 43:1689–1693PubMedCrossRefGoogle Scholar
  7. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  8. Corsaro D, Venditti D (2010) Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitol Res 107:233–238. doi: 10.1007/s00436-010-1870-6 PubMedCrossRefGoogle Scholar
  9. Corsaro D, Venditti D (2011) More Acanthamoeba genotypes: limits to the use of rDNA fragments to describe new genotypes. Acta Protozool 50:49–54Google Scholar
  10. Dendana F, Sellami H, Trabelsi H, Neji S, Cheikhrouhou F, Makni F, Ayadi A (2013) Acanthamoeba T4 genotype associated with keratitis infections in Tunisia. Parasitol Res 112:401–405PubMedCrossRefGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMedCrossRefGoogle Scholar
  12. Fritsche TR, Gautom RK, Seyedirashti S, Bergeron DL, Lindquist TD (1993) Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J Clin Microbiol 31:1122–1126PubMedGoogle Scholar
  13. Gast RJ (2001) Development of an Acanthamoeba-specific reverse dot-blot and the discovery of a new ribotype. J Eukaryot Microbiol 48:609–615PubMedCrossRefGoogle Scholar
  14. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi: 10.1093/molbev/msp259 PubMedCrossRefGoogle Scholar
  15. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433. doi: 10.1128/CMR.17.2.413 PubMedCrossRefGoogle Scholar
  16. Hewett MK, Robinson BS, Monis PT, Saint CP (2003) Identification of a new Acanthamoeba 18S rRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi Sawyer, Nerad and Visvesvara, 1992 (Lobosea: Acanthamoebidae). Acta Protozool 42:325–329Google Scholar
  17. Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol 1:357–367PubMedCrossRefGoogle Scholar
  18. Iovieno A, Ledee DR, Miller D, Eduardo C (2010) Detection of bacterial endosymbionts in clinical Acanthamoeba isolates. Ophthalmology 117:445–452. doi: 10.1016/j.ophtha.2009.08.033 PubMedCrossRefGoogle Scholar
  19. Kao PM, Hsu BM, Chen NH, Huang KH, Huang SW, King KL, Chiu YC (2012) Isolation and identification of Acanthamoeba species from thermal spring environments in southern Taiwan. Exp Parasitol 130:354–358. doi: 10.1016/j.exppara.2012.02.008 PubMedCrossRefGoogle Scholar
  20. Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595PubMedCrossRefGoogle Scholar
  21. Khan NA, Jarroll EL, Paget TA (2002) Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba. Cur Microbiol 45:197–202. doi: 10.1007/s00284-001-0108-3 CrossRefGoogle Scholar
  22. Ledee DR, Iovieno A, Miller D, Mandal N, Diaz M, Fell J, Fini ME, Alfonso EC (2009) Molecular identification of T4 and T5 genotypes in isolates from Acanthamoeba keratitis patients. J Clin Microbiol 47:1458–1462. doi: 10.1128/JCM.02365-08 PubMedCrossRefGoogle Scholar
  23. Lee JC, Gutell RR (2012) A comparison of the crystal structures of eukaryotic and bacterial SSU ribosomal RNAs reveals common structural features in the hypervariable regions. PloS one 7:e38203. doi: 10.1371/journal.pone.0038203 PubMedCrossRefGoogle Scholar
  24. Maghsood AH, Sissons J, Rezaian M, Nolder D, Warhurst D, Khan NA (2005) Acanthamoeba genotype T4 from the UK and Iran and isolation of the T2 genotype from clinical isolates. J Med Microbiol 54:755–759. doi: 10.1099/jmm.0.45970-0 PubMedCrossRefGoogle Scholar
  25. Magnet A, Galván AL, Fenoy S, Izquierdo F, Rueda C, Fernandez Vadillo C, Pérez-Irezábal J, Bandyopadhyay K, Visvesvara GS, Da Silva AJ, Del Aguila C (2012) Molecular characterization of Acanthamoeba isolated in water treatment plants and comparison with clinical isolates. Parasitol Res 111:383–392PubMedCrossRefGoogle Scholar
  26. Mahmoudi MR, Taghipour N, Eftekhar M, Haghighi A, Karanis P (2012) Isolation of Acanthamoeba species in surface waters of Gilan province-north of Iran. Parasitol Res 110:473–477PubMedCrossRefGoogle Scholar
  27. Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307. doi: 10.1128/CMR.16.2.273 PubMedCrossRefGoogle Scholar
  28. Neefs JM, De Wachter R (1990) A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. Nucleic Acids Res 18:5695–5704PubMedCrossRefGoogle Scholar
  29. Nuprasert W, Putaporntip C, Pariyakanok L, Jongwutiwes S (2010) Identification of a novel T17 genotype of Acanthamoeba from environmental isolates and T10 genotype causing keratitis in Thailand. J Clin Microbiol 48:4636–4640. doi: 10.1128/JCM.01090-10 PubMedCrossRefGoogle Scholar
  30. Qvarnstrom Y, Visvesvara GS, Sriram R, Da Silva AJ (2006) Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol 44:3589–3595. doi: 10.1128/JCM.00875-06 PubMedCrossRefGoogle Scholar
  31. Rivera WL, Adao DEV (2009) 18S ribosomal DNA genotypes of Acanthamoeba species isolated from contact lens cases in the Philippines. Parasitol Res 105:1119–1124. doi: 10.1007/s00436-009-1531-9 PubMedCrossRefGoogle Scholar
  32. Rivière D, Ménard F, Frère J, Héchard Y (2006) Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts. J Microbiol Meth 64:78–83. doi: 10.1016/j.mimet.2005.04.008 CrossRefGoogle Scholar
  33. Scheid P, Schwarzenberger R (2012) Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitol Res 111:479–485PubMedCrossRefGoogle Scholar
  34. Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, Byers TJ (2001) Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J Clin Microbiol 39:1903–1911. doi: 10.1128/JCM.39.5.1903 PubMedCrossRefGoogle Scholar
  35. Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027PubMedCrossRefGoogle Scholar
  36. Seal DV (2003) Acanthamoeba keratitis molecular epidemiology and new drugs for treatment. Eye 17:893–905. doi: 10.1038/sj.eye.6700563 PubMedCrossRefGoogle Scholar
  37. Shoff M, Rogerson A, Schatz S, Seal D (2007) Variable responses of Acanthamoeba strains to three multipurpose lens cleaning solutions. Optom Vis Sci 84:202–207PubMedCrossRefGoogle Scholar
  38. Siddiqui R, Sagheer M, Khan NA (2013) Prevalence of Acanthamoeba and superbugs in a clinical setting: coincidence or hyperparasitism? Parasitol Res 112:1349–1351PubMedCrossRefGoogle Scholar
  39. Spanakos G, Tzanetou K, Miltsakakis D, Patsoula E (2006) Genotyping of pathogenic Acanthamoebae isolated from clinical samples in Greece—report of a clinical isolate presenting T5 genotype. Parasitol Int 55:147–149. doi: 10.1016/j.parint.2005.12.001 PubMedCrossRefGoogle Scholar
  40. Stothard DR, Schroeder-Diedrich JM, Awwad MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers TJ (1998) The evolutionary history of the genus Acanthamoeba and the identification of eight new 18s rRNA gene sequence types. J Eukaryot Microbiol 45:45–54PubMedCrossRefGoogle Scholar
  41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCrossRefGoogle Scholar
  42. Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438. doi: 10.1128/AEM.72.4.2428 PubMedCrossRefGoogle Scholar
  43. Visvesvara GS, Schuster FL (2008) Opportunistic free-living amebae, part I. Clin Microbiol Newslett 30:151–158CrossRefGoogle Scholar
  44. Walochnik J, Obwaller A, Aspöck H (2000) Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Appl Environ Microbiol 66:4408–4413. doi: 10.1128/AEM.66.10.4408-4413.2000 PubMedCrossRefGoogle Scholar
  45. Walochnik J, Aichelburg A, Assadian O, Steuer A, Visvesvara G, Vetter N, Aspöck H (2008) Granulomatous amoebic encephalitis caused by Acanthamoeba amoebae of genotype T2 in a human immunodeficiency virus-negative patient. J Clin Microbiol 46:338–340. doi: 10.1128/JCM.01177-07 PubMedCrossRefGoogle Scholar
  46. Zhao G, Sun S, Zhao J, Xie L (2010) Genotyping of Acanthamoeba isolates and clinical characteristics of patients with Acanthamoeba keratitis in China. J Med Microbiol 1:462–466. doi: 10.1099/jmm.0.016667-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arnaud Risler
    • 1
  • Bénédicte Coupat-Goutaland
    • 1
  • Michel Pélandakis
    • 1
    Email author
  1. 1.Université de LyonCNRS UMR 5240, Université Lyon 1VilleurbanneFrance

Personalised recommendations