Parasitology Research

, Volume 112, Issue 11, pp 3697–3701 | Cite as

Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran

  • Hadi Sangian
  • Hossein Faramarzi
  • Alireza Yazdinezhad
  • Seyed Javad Mousavi
  • Zahra Zamani
  • Maryam Noubarani
  • Ali Ramazani
Original Paper


The effectiveness of antimalarial drugs is declining at an ever accelerating rate, with consequent increase in malaria-related morbidity and mortality. The newest antiplasmodial drug from plants is needed to overcome this problem. The aim of this study was to assess antimalarial activity of the ethanolic extracts of 10 different medicinal plants from eight families against Plasmodium falciparum chloroquine-sensitive 3D7 strain. The selection of the hereby studied plants was based on the existing information on their local ethnobotanic history. Plants were dried, powdered, and macerated in a hydroalcoholic solution. Resulting extracts have been assessed for in vitro and in vivo antimalarial and brine shrimp toxicity activities. Of 10 plant species tested, four plants: Althea officinalis L. (Malvaceae), Myrtus communis Linn (Myrtaceae), Plantago major (Plantaginaceae), and Glycyrrhiza glabra L. (Papilionaceae) displayed promising antimalarial activity in vitro (50 % inhibitory concentration values of 62.77, 42.18, 40.00, and 13.56 μg/mL, respectively) with no toxicity against brine shrimp larvae. The crude extracts of three active plants, G. glabra, M. communis, and A. officinalis, also significantly reduced parasitemia in vivo in female Swiss albino mice at a dose of 400 mg/kg compared to no treatment. Antiplasmodial activities of extracts of A. officinalis and M. communis are reported for the first time.


  1. Alem G, Mekonnen Y, Tiruneh M, Mulu A (2008) In vitro antibacterial activity of crude preparation of myrtle (Myrtus communis) on common human pathogens. Ethiop Med J 46(1):63–69PubMedGoogle Scholar
  2. Appendino G et al (2006) Antibacterial galloylated alkylphloroglucinol glucosides from myrtle (Myrtus communis). J Nat Prod 69(2):251–254. doi:10.1021/np050462w PubMedCrossRefGoogle Scholar
  3. Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108(1):15–22. doi:10.1007/s00436-010-2034-4 PubMedCrossRefGoogle Scholar
  4. Batista R, Silva Ade J Jr, de Oliveira AB (2009) Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14(8):3037–3072. doi:10.3390/molecules14083037 PubMedCrossRefGoogle Scholar
  5. Chandel S, Bagai U, Vashishat N (2012) Antiplasmodial activity of Xanthium strumarium against Plasmodium berghei-infected BALB/c mice. Parasitol Res 110(3):1179–1183. doi:10.1007/s00436-011-2611-1 PubMedCrossRefGoogle Scholar
  6. Djenane D, Yanguela J, Amrouche T, Boubrit S, Boussad N, Roncales P (2011) Chemical composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157:H7 and Staphylococcus aureus in minced beef. Food Sci Technol Int 17(6):505–515. doi:10.1177/1082013211398803 PubMedCrossRefGoogle Scholar
  7. Esmaeili S, Naghibi F, Mosaddegh M, Sahranavard S, Ghafari S, Abdullah NR (2009) Screening of antiplasmodial properties among some traditionally used Iranian plants. J Ethnopharmacol 121(3):400–4. doi:10.1016/j.jep.2008.10.041 PubMedCrossRefGoogle Scholar
  8. Finney DJ (1949) The adjustment for a natural response rate in probit analysis. Ann Appl Biol 36(2):187–195PubMedCrossRefGoogle Scholar
  9. Gessler M, Tanner M, Chollet J, Nkunya M, Heinrich M (1995) Tanzanian medicinal plants used traditionally for the treatment of malaria: in vivo antimalarial and in vitro cytotoxic activities. Phytother res 9(7):504–508CrossRefGoogle Scholar
  10. Groombridge B (1992) Global biodiversity: status of the earth’s living resources. Chapman and Hall, LondonCrossRefGoogle Scholar
  11. Hage-Sleiman R, Mroueh M, Daher CF (2011) Pharmacological evaluation of aqueous extract of Althaea officinalis flower grown in Lebanon. Pharm Biol 49(3):327–333. doi:10.3109/13880209.2010.516754 PubMedCrossRefGoogle Scholar
  12. Hosseinzadeh H, Khoshdel M, Ghorbani M (2011) Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of Myrtus communis L. aerial parts in mice. J Acupunct Meridian Stud 4(4):242–247. doi:10.1016/j.jams.2011.09.015 PubMedCrossRefGoogle Scholar
  13. Jorjani L (1992) Zakhireh kharazmshahi. Bonyade Farhang Iran, TehranGoogle Scholar
  14. Kamaraj C et al (2012) Antiplasmodial potential of medicinal plant extracts from Malaiyur and Javadhu hills of South India. Parasitol Res 111(2):703–715. doi:10.1007/s00436-011-2457-6 PubMedCrossRefGoogle Scholar
  15. Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17(9):3229–3256. doi:10.1016/j.bmc.2009.02.050 PubMedCrossRefGoogle Scholar
  16. Khorasani A (1992) Makhzan ol-Advieh. Tehran: Publ educ Islam revolut 1371:472–473Google Scholar
  17. Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65(3):418–420PubMedCrossRefGoogle Scholar
  18. Nahrevanian H, Esmaeili B, Kazemi M, Nazem H, Amini M (2010) In vivo antimalarial effects of Iranian flora Artemisia khorassanica against Plasmodium berghei and pharmacochemistry of its natural components. Iran J Parasitol 5(1):6–19PubMedGoogle Scholar
  19. Nahrevanian H, Sheykhkanlooye Milan B, Kazemi M, Hajhosseini R, Soleymani Mashhadi S, Nahrevanian S (2012) Antimalarial effects of Iranian flora Artemisia sieberi on Plasmodium berghei in vivo in mice and phytochemistry analysis of its herbal extracts. Malar Res Treat 2012:727032. doi:10.1155/2012/727032 PubMedGoogle Scholar
  20. Nassar MI, el SA A, Ahmed RF, El-Khrisy ED, Ibrahim KM, Sleem AA (2010) Secondary metabolites and bioactivities of Myrtus communis. Pharmacogn Res 2(6):325–329. doi:10.4103/0974-8490.75449 CrossRefGoogle Scholar
  21. Ndjonka D et al (2012) In vitro activity of extracts and isolated polyphenols from West African medicinal plants against Plasmodium falciparum. Parasitol Res 111(2):827–834. doi:10.1007/s00436-012-2905-y PubMedCrossRefGoogle Scholar
  22. O’Neill MJ et al (1986) Plants as sources of antimalarial drugs: in vitro antimalarial activities of some quassinoids. Antimicrob Agents Chemother 30(1):101–104PubMedCrossRefGoogle Scholar
  23. Padmaja R, Arun PC, Prashanth D, Deepak M, Amit A, Anjana M (2002) Brine shrimp lethality bioassay of selected Indian medicinal plants. Fitoterapia 73(6):508–510. doi:10.1016/S0367-326X(02)00182-X PubMedCrossRefGoogle Scholar
  24. Parija SC, Praharaj I (2011) Drug resistance in malaria. Indian J Med Microbiol 29(3):243–248. doi:10.4103/0255-0857.83906 PubMedCrossRefGoogle Scholar
  25. Peters W, Li ZL, Robinson BL, Warhurst DC (1986) The chemotherapy of rodent malaria. XL. The action of artemisinin and related sesquiterpenes. Ann Trop Med Parasitol 80(5):483–489PubMedGoogle Scholar
  26. Prakash A et al (2013) In vitro and in vivo antiplasmodial activity of the root extracts of Brucea mollis Wall. ex Kurz. Parasitol Res 112(2):637–642. doi:10.1007/s00436-012-3178-1 PubMedCrossRefGoogle Scholar
  27. Ramazani A, Sardari S, Zakeri S, Vaziri B (2010a) In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res 107(3):593–599. doi:10.1007/s00436-010-1900-4 PubMedCrossRefGoogle Scholar
  28. Ramazani A, Zakeri S, Sardari S, Khodakarim N, Djadidt ND (2010b) In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malar J 9:124. doi:10.1186/1475-2875-9-124 PubMedCrossRefGoogle Scholar
  29. Ravikumar S, Inbaneson SJ, Suganthi P, Gnanadesigan M (2011) In vitro antiplasmodial activity of ethanolic extracts of mangrove plants from South East coast of India against chloroquine-sensitive Plasmodium falciparum. Parasitol Res 108(4):873–878. doi:10.1007/s00436-010-2128-z PubMedCrossRefGoogle Scholar
  30. Recio M, Rios J, Villar A (1989) Antimicrobial activity of selected plants employed in the Spanish Mediterranean area. Part II. Phytother res 3(3):77–80CrossRefGoogle Scholar
  31. Shah SA et al (2011) Pharmacological activity of Althaea officinalis L. J Med Plant Res 5(24):5662–5666Google Scholar
  32. Sina I (2007) Al qanoon fil tib. Lucknow: Mataba Munshi Nav Kishore 522Google Scholar
  33. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675PubMedCrossRefGoogle Scholar
  34. Valdes AF, Martinez JM, Lizama RS, Gaiten YG, Rodriguez DA, Payrol JA (2010) In vitro antimalarial activity and cytotoxicity of some selected Cuban medicinal plants. Rev Inst Med Trop Sao Paulo 52(4):197–201. doi:10.1590/S0036-46652010000400006 PubMedCrossRefGoogle Scholar
  35. Zanetti S, et al. (2010) Evaluation of the antimicrobial properties of the essential oil of Myrtus communis L. against clinical strains of Mycobacterium spp. Interdiscip Perspect Infect Dis doi:10.1155/2010/931530Google Scholar
  36. Zargari A (1997) Iranian medicinal plants. Tehran University Publications, TehranGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hadi Sangian
    • 1
    • 2
  • Hossein Faramarzi
    • 1
    • 2
  • Alireza Yazdinezhad
    • 3
  • Seyed Javad Mousavi
    • 4
  • Zahra Zamani
    • 5
  • Maryam Noubarani
    • 6
  • Ali Ramazani
    • 1
    • 2
  1. 1.Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical SciencesZanjanIran
  2. 2.Department of Biotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
  3. 3.Department of Pharmacognosy, School of PharmacyZanjan University of Medical SciencesZanjanIran
  4. 4.Zanjan Blood Transfusion CenterZanjanIran
  5. 5.Department of BiochemistryPasteur Institute of IranTehranIran
  6. 6.Department of Pharmacology and Toxicology, School of PharmacyZanjan University of Medical SciencesZanjanIran

Personalised recommendations