Parasitology Research

, Volume 112, Issue 10, pp 3471–3476

Investigation of activity of monoterpenes and phenylpropanoids against immature stages of Amblyomma cajennense and Rhipicephalus sanguineus (Acari: Ixodidae)

  • Tatiane Oliveira Souza Senra
  • Fernanda Calmon
  • Viviane Zeringóta
  • Caio Márcio Oliveira Monteiro
  • Ralph Maturano
  • Renata da Silva Matos
  • Diego Melo
  • Geovany Amorim Gomes
  • Mario Geraldo de Carvalho
  • Erik Daemon
Original Paper

Abstract

The objective of this study was to assess the acaricidal activity of carvacrol, thymol, eugenol, and (E)-cinnamaldehyde on unengorged larvae and nymphs of Amblyomma cajennense and Rhipicephalus sanguineus, using the modified larval packet test. Carvacrol, eugenol, and (E)-cinnamaldehyde were tested at concentrations of 2.5, 5.0, 10.0, 15.0, and 20.0 μl/ml, while thymol was tested at concentrations of 2.5, 5.0, 10.0, 15.0, and 20.0 mg/ml, in all cases with 10 repetitions per treatment. For the A. cajennense larvae, mortality rates caused by carvacrol, thymol, eugenol, and (E)-cinnamaldehyde at the lowest concentration were 45.0, 62.7, 10.2, and 81.6 %, respectively, reached 100 % at the concentration of 5.0 μl/ml for carvacrol and (E)-cinnamaldehyde and 5.0 mg/ml for thymol, while this mortality was observed at 15.0 μl/ml for eugenol. For the nymphs of this species, carvacrol and thymol caused 100 % mortality starting at a concentration of 5.0 μl/ml and 10.0 mg/ml, respectively, while eugenol caused 100 % mortality at 20.0 μl/ml and the mortality caused by (E)-cinnamaldehyde did not exceed 64 %. In the tests with R. sanguineus larvae, the lowest concentration of carvacrol and (E)-cinnamaldehyde resulted in 100 % mortality, while this percentage was observed starting at 10.0 μl/ml for eugenol. For nymphs, carvacrol and thymol at the smallest concentration caused 100 % lethality, unlike the results for eugenol and (E)-cinnamaldehyde, where 100 % mortality was only observed starting at the concentration of 10.0 μl/ml. The results obtained indicate that the tested substances have acaricidal activity on unengorged larvae and nymphs of A. cajennense and R. sanguineus.

References

  1. Ali SM, Khan AA, Ahmed I, Musaddiq M, Ahmed KS, Polasa H, Rao LV, Habibullah CM, Sechi LA, Ahmed N (2005) Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Mic Antimicrob 04:1–7CrossRefGoogle Scholar
  2. Ayres M, Ayres Junior M, Ayres DL, Santos AAS (2007) Aplicações estatísticas nas áreas das ciências bio-médicas. Instituto Mamirauá, BelémGoogle Scholar
  3. Borges LMF, Sousa LAD, Barbosa CS (2011) Perspectives for the use of plant extracts to control the cattle tick Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet 20:89–96PubMedCrossRefGoogle Scholar
  4. Bustamante ME, Varela G (1947) Distribuicion de las rickettsiasis em Mexico. Rev Inst Salubr Enferm Trop 8:3–14Google Scholar
  5. Cetin H, Cilek JE, Aydin L, Yanikoglu A (2009) Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus (Acari: Ixodidae). Vet Parasitol 160:359–361PubMedCrossRefGoogle Scholar
  6. Cetin H, Cilek JE, Oz E, Aydin L, Deveci O, Yanikoglu A (2010) Acaricidal activity of Satureja thymbra L. essential oil and its major components, carvacrol and [gamma]-terpinene against adult Hyalomma marginatum (Acari: Ixodidae). Vet Parasitol 170:287–290PubMedCrossRefGoogle Scholar
  7. Chagas ACS, Barros L, Cotinguiba F, Furlan M, Giglioti R, Oliveira MS, Bizzo H (2012) In vitro efficacy of plant extracts and synthesized substances on Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 110:295–303CrossRefGoogle Scholar
  8. Combrinck S, Regnier T, Kamatou GPP (2011) In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Ind Crop Prod 33:344–349CrossRefGoogle Scholar
  9. Coskun S, Girisgin O, Kurkcuoglu M, Malyer H, Girisgin AO, Kirimer N, Baser KH (2008) Acaricidal efficacy of Origanum onites L. essential oil against Rhipicephalus turanicus (Ixodidae). Parasitol Res 103:259–261PubMedCrossRefGoogle Scholar
  10. Daemon E, Monteiro CMO, Rosa LS, Clemente MA, Arcoverde A (2009) Evaluation of the acaricide activity of thymol on engorged and unengorged larvae of Rhipicephalus sanguineus (Latreille, 1808) (Acari: Ixodidae). Parasitol Res 105:495–497PubMedCrossRefGoogle Scholar
  11. Daemon E, Maturano R, Monteiro CMO, Scoralik MG, Massoni T (2012) Acaricidal activity of hydroethanolic formulations of thymol against Rhipicephalus sanguineus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae. Vet Parasitol 186:542–545PubMedCrossRefGoogle Scholar
  12. Dantas-Torres F (2008) The brown dog tick, Rhipicephalus sanguineus (Latreille,1806) (Acari: Ixodidae): from taxonomy to control. Vet Parasitol 152:173–185PubMedCrossRefGoogle Scholar
  13. Del Fabbro S, Nazzi F (2008) Repellent effect of sweet basil compounds on Ixodes ricinus ticks. Exp Appl Acarol 45:219–228PubMedCrossRefGoogle Scholar
  14. Demma LJ, Traeger MS, Nicholson WL, Paddock CD, Blau DM, Eremeeva ME, McQuiston JH (2005) Rocky mountain spotted fever from an unexpected tick vector in Arizona. New Engl J Med 353:587–594PubMedCrossRefGoogle Scholar
  15. Dolan MC, Jordan RA, Schulze TL, Schulze CJ, Manning MC, Ruffolo D, Schmidt JP, Piesman J, Karchesy JJ (2009) Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a lyme disease endemic area of New Jersey. J Econ Entomol 102:231–232CrossRefGoogle Scholar
  16. Ferrarini SR, Duarte MO, Rosa RG, Rolim V, Eifler-Lima VL, Von Poser G, Ribeiro VLS (2008) Acaricidal activity of limonene, limonene oxide and [beta]-amino alcohol derivatives on Rhipicephalus (Boophilus) microplus. Vet Parasitol 157:149–153PubMedCrossRefGoogle Scholar
  17. Franz C, Novak J (2009) Sources of essential oils. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils: science, technology, and applications. CRC, New York, pp 39–81CrossRefGoogle Scholar
  18. Gomes GA, Monteiro CMO, Senra TOS, Zeringóta V, Calmon F, Matos RS, Daemon E, Gois RWS, Santiago GMP, Carvalho MG (2012) Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res 111:423–430CrossRefGoogle Scholar
  19. Guglielmone AA, Szabó MPJ, Martins JRS, Estrada-Pena A (2006) Diversidade e importância de carrapatos na sanidade animal. In: Barros-Battesti DMB, Arzua M, Bechara GH (eds) Carrapatos de importância médico-veterinária da Região Neotropical. Um guia ilustrado para a identificação de espécies. Instituto Butantan, São Paulo, pp 115–138Google Scholar
  20. Guimarães JH, Tucci EC, Barros-Battesti DM (2001) Ectoparasitos de importância veterinária. Plêiade/FAPESP, São PauloGoogle Scholar
  21. Kaaya GP, Mwangi EN, Ouna EA (1996) Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus and Amblyomma variegatum, using the entomogenous fungi Beauvaria bassiana and Metarhizium anisopliae. J Invertebr Pathol 67:15–20PubMedCrossRefGoogle Scholar
  22. Kiss T, Cadar D, Spînu M (2012) Tick prevention at a crossroad: new and renewed solutions. Vet Parasitol 187:357–366PubMedCrossRefGoogle Scholar
  23. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84Google Scholar
  24. Labruna MB (2004) Biologia-ecologia de Rhipicephalus sanguineus (Acari: Ixodidae). Rev Bras Parasitol Vet 13:123–124Google Scholar
  25. Labruna MB (2009) Ecology of Rickettsia in South America. Ann N Y Acad Sci 1166:156–166 Google Scholar
  26. Labruna MB, Kamakura O, Moraes-Filho J, Horta MC, Pacheco RC (2009) Rocky mountain spotted fever in dogs, Brazil. Emerg Infect Dis 15:458PubMedCrossRefGoogle Scholar
  27. Lage TCA, Montanari RM, Fernandes SA, Monteiro CMO, Senra TOS, Zeringota V, Calmon F, Matos RSM, Daemon E (2013) Activity of essential oil of Lippia triplinervis Gardner (Verbenaceae) on Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res 112:863–869PubMedCrossRefGoogle Scholar
  28. Lee EJ, Kim JR, Choi DR, Ahn YJ (2008) Toxicity of cassia e cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae). J Econ Entomol 101:1960–1966PubMedCrossRefGoogle Scholar
  29. Martinez-Velazquez M, Castillo-Herrera G, Rosario-Cruz R, Flores-Fernandez J, Lopez-Ramirez J, Hernandez-Gutierrez R, Lugo-Cervantes EC (2011) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 108:481–487PubMedCrossRefGoogle Scholar
  30. Martins JR, Medri IM, Oliveira CM, Guglielmone A (2004) Ocorrência de carrapatos em tamanduá-bandeira (Myrmecophaga tridactyla) e tamanduá mirim (Tamandua tetradactyla) na região do Pantanal Sul Mato-Grossense, Brasil. Cienc Rural 34:293–295CrossRefGoogle Scholar
  31. Matsumoto K, Brouqui P, Raoult D, Parola P (2005) Experimental infection models of ticks of the Rhipicephalus sanguineus group with Rickettsia conorii. Vector-Borne Zoonot 5:363–372CrossRefGoogle Scholar
  32. Mendes AS, Daemon E, Monteiro CMO, Maturano R, Brito FC, Massoni T (2011) Acaricidal activity of thymol on larvae and nymphs of Amblyomma cajennense (Acari: Ixodidae). Vet Parasitol 183:136–139CrossRefGoogle Scholar
  33. Monteiro CMO, Daemon E, Clemente MA, Rosa LS, Maturano R (2009) Acaricidal efficacy of thymol on engorged nymphs and females of Rhipicephalus sanguineus (Latreille, 1808) (Acari: Ixodidae). Parasitol Res 105:1093–1097CrossRefGoogle Scholar
  34. Monteiro CMO, Daemon E, Silva AMR, Maturano R, Amaral CD (2010) Acaricide and ovicide activities of thymol on engorged females and eggs of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 106:615–619CrossRefGoogle Scholar
  35. Monteiro CMO, Maturano R, Daemon E, Catunda-Junior FEA, Calmon F, Senra TOS, Faza A, Carvalho MG (2012) Acaricidal activity of eugenol on Rhipicephalus microplus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae. Parasitol Res 111:1295–1300PubMedCrossRefGoogle Scholar
  36. Neitz WO, Boughton F, Walters HS (1971) Laboratory investigations on the life-cycle of the Karoo paralysis tick (Ixodes rubicundus Neumann, 1904). Onderstepoort J Vet Res 38:215–224PubMedGoogle Scholar
  37. Pacheco RC, Moraes-Filho J, Guedes E, Silveira I, Richtze Nhai LJ (2011) Rickettsial infections of dogs, horses and ticks in Juiz de Fora, southeastern Brazil, and isolation of Rickettsia rickettsii from Rhipicephalus sanguineus ticks. Med Vet Entomol 25:148–155PubMedCrossRefGoogle Scholar
  38. Pozzo MD, Viégas J, Santurio DF, Rossato L, Soares IH, Alves SH, Costa MM (2011) Atividade antimicrobiana de óleos essenciais de condimentos frente a Staphylococcus spp isolados de mastite caprina. Cienc Rural 41:667–672CrossRefGoogle Scholar
  39. Prata MCA, Alonso LS, Sanavria A (1996) Parâmetros biológicos do estádio ninfal de Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae) em coelhos. Rev Bras Cienc Vet 3:55–57Google Scholar
  40. Scoralik M, Daemon E, Monteiro CMO, Maturano R (2012) Enhancing the acaricide effect of thymol on larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae) by solubilization in ethanol. Parasitol Res 110:645–648PubMedCrossRefGoogle Scholar
  41. Senra TOS, Zeringóta V, Monteiro CMO, Calmon F, Maturano R, Gomes GA, Faza A, Carvalho MG, Daemon E (2013) Assessment of the acaricidal activity of carvacrol, (E)-cinnamaldehyde, trans-anethole and linalool on larvae of Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae). Parasitol Res 112:1461–1466CrossRefGoogle Scholar
  42. Shen F, Xing M, Liu L, Tang X, Wang W, Wang X, Wu X, Wang X, Wang X, Wang G, Zhang J, Li L, Zhang J, Yu L (2012) Efficacy of trans-cinnamaldehyde against Psoroptes cuniculi in vitro. Parasitol Res 110:1321–1326PubMedCrossRefGoogle Scholar
  43. Sousa R, Bacellar F (2004) Morbi-mortalidade por Rickettsia conorii em Portugal. Rev Bras Parasitol Vet 13:180–184Google Scholar
  44. Souza CE, Calic SB, Camargo MCGO, Savani ESM, Souza SSL, Lima VLC, Neto EJR, Yoshinari NH (2004) O papel das capivaras Hydrochaeris hydrochaeris na cadeia epidemiológica da febre maculosa brasileira. Rev Bras Parasitol Vet 13:203–205Google Scholar
  45. Stone BF, Haydock KP (1962) A method for measuring the acaricide susceptibility of the cattle Boophilus microplus (Canestrini). Bull Entomol Res 53:563–578CrossRefGoogle Scholar
  46. Zeringóta V, Senra TOS, Calmon F, Maturano R, Faza AP, Catunda-Junior FEA, Monteiro CMO, Carvalho MGC, Daemon E (2013) Repellent activity of eugenol on larvae of Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae). Parasitol Res 112:2675–2679PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tatiane Oliveira Souza Senra
    • 1
  • Fernanda Calmon
    • 1
  • Viviane Zeringóta
    • 1
  • Caio Márcio Oliveira Monteiro
    • 2
  • Ralph Maturano
    • 2
  • Renata da Silva Matos
    • 1
  • Diego Melo
    • 1
  • Geovany Amorim Gomes
    • 3
  • Mario Geraldo de Carvalho
    • 3
  • Erik Daemon
    • 1
  1. 1.Pós-Graduação em Ciências Biológicas - Comportamento e Biologia AnimalUniversidade Federal de Juiz de ForaJuiz de ForaBrasil
  2. 2.Pós-Graduação em Ciências VeterináriasUniversidade Federal Rural do Rio de JaneiroSeropédicaBrasil
  3. 3.Departamento de QuímicaUniversidade Federal Rural do Rio de JaneiroSeropédicaBrasil

Personalised recommendations