Parasitology Research

, Volume 112, Issue 10, pp 3379–3388 | Cite as

The tapeworm Atractolytocestus tenuicollis (Cestoda: Caryophyllidea)—a sister species or ancestor of an invasive A. huronensis?

  • Ivica Králová-HromadováEmail author
  • Jan Štefka
  • Eva Bazsalovicsová
  • Silvia Bokorová
  • Mikuláš Oros
Original Paper


Atractolytocestus tenuicollis (Li, 1964) Xi, Wang, Wu, Gao et Nie, 2009 is a monozoic, non-segmented tapeworm of the order Caryophyllidea, parasitizing exclusively common carp (Cyprinus carpio L.). In the current work, the first molecular data, in particular complete ribosomal internal transcribed spacer 2 (ITS2) and partial mitochondrial cytochrome c oxidase subunit I (cox1) on A. tenuicollis from Niushan Lake, Wuhan, China, are provided. In order to evaluate molecular interrelationships within Atractolytocestus, the data on A. tenuicollis were compared with relevant data on two other congeners, Atractolytocestus huronensis and Atractolytocestus sagittatus. Divergent intragenomic copies (ITS2 paralogues) were detected in the ITS2 ribosomal spacer of A. tenuicollis; the same phenomenon has previously been observed also in two other congeners. ITS2 structure of A. tenuicollis was very similar to that of A. huronensis from Slovakia, USA and UK; overall pairwise sequence identity was 91.7–95.2 %. On the other hand, values of sequence identity between A. tenuicollis and A. sagittatus were lower, 69.7–70.9 %. Cox1 sequence, analysed in five A. tenuicollis individuals, were 100 % identical and no intraspecific variation was observed. Comparison of A. tenuicollis cox1 with respective sequences of two other Atractolytocestus species showed that the mitochondrial haplotype found in Chinese A. tenuicollis is structurally specific (haplotype 4; Ha4) and differs from all so far determined Atractolytocestus haplotypes (Ha1 and Ha2 for A. huronensis; Ha3 for A. sagittatus). Pairwise sequence identity between A. tenuicollis cox1 haplotype and remaining three haplotypes followed the same pattern as in ITS2. The nucleotide and amino acide (aa) sequence comparison with A. huronensis Ha1 and Ha2 revealed higher sequence identity, 90.3–90.8 % (96.9 % in aa), while lower values were achieved between A. tenuicollis haplotype and Ha3 of Japanese A. sagittatus—75.2 % (81.9 % in aa). The phylogenetic analyses using cox1, ITS2 and combined cox1 + ITS2 sequences revealed close genetic interrelationship between A. tenuicollis and A. huronensis. Independently of a type of analysis and DNA region used, the topology of obtained trees was always identical; A. tenuicollis formed separate clade with A. huronensis forming a closely related sister group.


Common Carp Vitelline Follicle Cox1 Sequence Mitochondrial Cox1 Pairwise Sequence Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M. O. greatly appreciates Dr. Xi Bing Wen (Freshwater Fisheries Research Centre, Wuxi, China) for invaluable help during material collection. This study was financially supported by the Grant Agency of the Slovak Republic (projects VEGA 2/0014/10 and 2/0129/12), by the Slovak Research and Development Agency under contract APVV-0653-11, by the Czech Science Foundation (project P505/12/G112), and by the Institute of Parasitology (RVO: 60077344). The study was realised as part of the project “Centre of Excellence for Parasitology” (Code ITMS: 26220120022), based on support of the Operational Programme “Research & Development” funded from the European Regional Development Fund (rate 0.1).

Supplementary material

436_2013_3516_MOESM1_ESM.pdf (8 kb)
Suppl. 1 Cox1 gene tree obtained from *BEAST. Posterior probabilities are provided above clades. Species codes, country codes, haplotype numbering and individual codes follow that on Table 2. (PDF 8 kb)
436_2013_3516_MOESM2_ESM.pdf (8 kb)
Suppl. 2 ITS2 gene tree obtained from *BEAST. Posterior probabilities are provided above clades. Abbreviations of species and country codes and numbering of individuals/ITS2 codes are explained in Table 1. (PDF 8 kb)


  1. Anthony JD (1958) Atractolytocestus huronensis n. gen., n. sp. (Cestoda: Lytocestidae) with notes on its morphology. Trans Am Microsc Soc 77:383–390CrossRefGoogle Scholar
  2. Baruš and Oliva (1995) Mihulovci a ryby (Lampreys and Fish). Fauna Czech Slovak Republic, Academia, Praha 28:234–261 (in Czech)Google Scholar
  3. Bazsalovicsová E, Králová-Hromadová I, Štefka J, Scholz T, Hanzelová V, Vávrová S, Szemes T, Kirk R (2011) Population study of Atractolytocestus huronensis (Cestoda: Caryophyllidea), an invasive parasite of common carp introduced to Europe: mitochondrial cox1 haplotypes and intragenomic ribosomal ITS2 variants. Parasitol Res 109:125–131PubMedCrossRefGoogle Scholar
  4. Bazsalovicsová E, Králová-Hromadová I, Štefka J, Scholz T (2012) Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis. Parasitol Res 110:1621–1629PubMedCrossRefGoogle Scholar
  5. Bruňanská M, Nebesářová J, Oros M (2011) Ultrastructural aspects of spermatogenesis, testes, and vas deferens in the parthenogenetic tapeworm Atractolytocestus huronensis Anthony, 1958 (Cestoda: Caryophyllidea), a carp parasite from Slovakia. Parasitol Res 108:61–68PubMedCrossRefGoogle Scholar
  6. Chubb JC, Kirk R, Wellby, I (1996) Caryophyllaeid tapeworm Atractolytocestus huronensis Anthony, 1958 (=Markevitschia sagittata Kulakovkaya et Akhmerov, 1965) in carp Cyprinus carpio L. in British Isles—another translocation? In: Abstract of the Spring Meeting of the British Society of Parasitology, University of Wales, 1996, p. 66Google Scholar
  7. Cunningham CO (1997) Species variation within the internal transcribed spacer (ITS) region of Gyrodactylus (Monogenea: Gyrodactylidae) ribosomal RNA genes. J Parasitol 83:215–219PubMedCrossRefGoogle Scholar
  8. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8):772PubMedCrossRefGoogle Scholar
  9. Demshin NI, Dvoryadkin VA (1981) The development of Markevitschia sagitatta (Cestoidea: Caryophyllidae), a parasite of the Amur wild carp, in the external medium and in the intermediate host. Parazitologiya 15:113–117Google Scholar
  10. Gjurcević E, Bambir S, Beck A (2009) Atractolytocestus huronensis Anthony, 1958 from farmed common carp in Croatia. In: 14th EAFP International Conference, Abstract Book. Diseases of fish and shellfish, Prague, Czech RepublicGoogle Scholar
  11. Goloboff P, Farris S, Nixon K (2000) TNT (Tree analysis using New Technology) (BETA) Published by the authors. Tucumán, ArgentinaGoogle Scholar
  12. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  13. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  14. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580PubMedCrossRefGoogle Scholar
  15. Hoffman GL (1999) Parasites of North American freshwater fishes, Secondth edn. Comstock Publishing, London, 539 ppGoogle Scholar
  16. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  17. Jones AW, Mackiewicz JS (1969) Naturally occurring triploidy and parthenogenesis in Atractolytocestus huronensis Anthony (Cestoidea: Caryophyllidea) from Cyprinus carpio L. in North America. J Parasitol 55:1105–1118CrossRefGoogle Scholar
  18. Kappe A, Seifert T, El-Nobi G, Bräuer G (2006) Occurrence of Atractolytocestus huronensis (Cestoda: Caryophyllaeidae) in German pond-farmed common carp Cyprinus carpio. Dis Aquat Organ 70:255–259PubMedCrossRefGoogle Scholar
  19. Kirk RS, Veltkamp CJ, Chubb JC (2003) Identification of Atractolytocestus huronensis (Caryophyllidea: Lytocestidae) from carp (Cyprinus carpio) using histological and ashing techniques. Abstract of the Spring Meeting of the British Society of Parasitology, Manchester, pp 45–46Google Scholar
  20. Králová-Hromadová I, Scholz T, Shinn AP, Cunningham CO, Wootten R, Hanzelová V, Sommerville C (2003) A molecular study of Eubothrium rugosum (Batsch, 1786) (Cestoda: Pseudophyllidea) using ITS rDNA sequences, with notes on the distribution and intraspecific sequence variation of Eubothrium crassum (Bloch, 1779). Parasitol Res 89:473–479PubMedGoogle Scholar
  21. Králová-Hromadová I, Stefka J, Spakulová M, Orosová M, Bombarová M, Hanzelová V, Bazsalovicsová E, Scholz T (2010) Intraindividual ITS1 and ITS2 ribosomal sequence variation linked with multiple rDNA loci: a case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp. Int J Parasitol 40:175–181Google Scholar
  22. Králová-Hromadová I, Bazsalovicsová E, Oros M, Scholz T (2012) Sequence structure and intragenomic variability of ribosomal ITS2 in monozoic tapeworms of the genus Khawia (Cestoda: Caryophyllidea), parasites of cyprinid fish. Parasitol Res 111:1621–1627PubMedCrossRefGoogle Scholar
  23. Kulakovskaya OP, Akhmerov AC (1965) Markevitschia sagittata n. gen. n. sp. (Cestoda, Lytocestidae) from common carp in the Amur River. In: Parasites and parasitoses of man and animals. Naukova Dumka, Kiev, pp 264–271 (in Russian)Google Scholar
  24. Lavikainen A, Haukisalmi V, Lehtinen MJ, Laaksonen S, Holmström S, Isomursu M, Oksanen A, Meri S (2010) Mitochondrial DNA data reveal cryptic species within Taenia krabbei. Parasitol Int 59:290–293PubMedCrossRefGoogle Scholar
  25. Li MM (1964) A new genus and three new species of cestodes (Caryophyllaeidae) from Cyprinus carpio in China. Acta Zootax Sin 1:355–366Google Scholar
  26. Mabuchi K, Senou H, Nishida M (2008) Mitochondrial DNA analysis reveals cryptic large-scale invasion of non-native genotypes of common carp (Cyprinus carpio) in Japan. Mol Ecol 3:796–809CrossRefGoogle Scholar
  27. Majoros G, Csaba G, Molnár K (2003) Occurrence of Atractolytocestus huronensis Anthony, 1958 (Cestoda: Caryophyllaeidae), in Hungarian pond-farmed common carp. Bull Eur Assoc Fish Pathol 23:167–175Google Scholar
  28. Oros M, Hanzelová V, Scholz T (2004) The cestode Atractolytocestus huronensis (Caryophyllidea) continues to spread in Europe: new data on the helminth parasite of the common carp. Dis Aquat Organ 62:115–119PubMedCrossRefGoogle Scholar
  29. Oros M, Králová-Hromadová I, Hanzelová V, Bruňanská M, Orosová M (2011) Atractolytocestus huronensis (Cestoda): a new invasive parasite of common carp in Europe. In: Carp: habitat, management and diseases. Nova Science Publisher, USA, pp 63–94Google Scholar
  30. Pongratz N, Storhas M, Carranza S, Michiels NK (2003) Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evol Biol 3:23PubMedCrossRefGoogle Scholar
  31. Rambaut A, Drummond A (2005) Tracer.
  32. Scholz T, Shimazu T, Olson PD, Nagasawa K (2001) Caryophyllidean tapeworms (Platyhelminthes: Eucestoda) from freshwater fishes in Japan. Folia Parasitol 48:275–288PubMedGoogle Scholar
  33. Scholz T, Brabec J, Králová-Hromadová I, Oros M, Bazsalovicsová E, Ermolenko A, Hanzelová V (2011) Revision of Khawia spp. (Cestoda: Caryophyllidea), parasites of cyprinid fish, including a key to their identification and molecular phylogeny. Folia Parasitol 58:197–223PubMedGoogle Scholar
  34. Špakulová M, Orosová M, Mackiewicz JS (2011) Cytogenetics and chromosomes of tapeworms (Platyhelminthes, Cestoda). Adv Parasitol 74:177–230PubMedCrossRefGoogle Scholar
  35. Telford MJ, Herniou EA, Russell RB, Littlewood DT (2000) Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci USA 9:11359–11364CrossRefGoogle Scholar
  36. Thai BT, Burridge CP, Pham TA, Austin CM (2004) Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio L.). Anim Genet 36:23–28CrossRefGoogle Scholar
  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment throughout sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  38. Verneau O, Renaud F, Catzeflis F (1997) Evolutionary relationships of sibling tapeworm species (Cestoda) parasitizing teleost fishes. Mol Biol Evol 14:630–636PubMedCrossRefGoogle Scholar
  39. Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16:381–390PubMedCrossRefGoogle Scholar
  40. Xi BW, Wang GT, Wu SG, Gao D, Nie P (2009) New record of genus Atractolytocestus in China with redescription of A. sagittatus (Cestoda, Caryophyllidea) from Cyprinus carpio. Acta Zootax Sin 34:407–410Google Scholar
  41. Xi BW, Oros M, Wang TG, Scholz T, Xie J (2013) Khawia abbottinae n. sp. (Cestoda: Caryophyllidea) from the Chinese false gudgeon Abbottina rivularis (Cyprinidae: Gobioninae) in China: morphological and molecular data. Folia Parasitol 60:141–148PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ivica Králová-Hromadová
    • 1
    Email author
  • Jan Štefka
    • 2
  • Eva Bazsalovicsová
    • 1
  • Silvia Bokorová
    • 3
  • Mikuláš Oros
    • 1
  1. 1.Institute of ParasitologySlovak Academy of SciencesKošiceSlovakia
  2. 2.Biology Centre ASCR, Institute of Parasitology, and Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations