Advertisement

Parasitology Research

, Volume 112, Issue 7, pp 2543–2549 | Cite as

Variations in local adaptation of allopatric Fasciola hepatica to French Galba truncatula in relation to parasite origin

  • Y. Dar
  • M. Lounnas
  • F. F. Djuikwo Teukeng
  • R. Mouzet
  • B. Courtioux
  • S. Hurtrez-Boussès
  • P. Vignoles
  • G. Dreyfuss
  • D. Rondelaud
Original Paper

Abstract

Two French populations of Galba truncatula were subjected to experimental infections with Egyptian and French isolates of Fasciola sp. miracidia, originating from cattle and sheep, to compare characteristics of snail infections in allopatric and sympatric groups. All sampled Egyptian isolates were identified as Fasciola hepatica using microsatellite markers. Compared to snails infected with French miracidia, snail survival at day 30 post-exposure was significantly greater in the Egyptian groups, while prevalence of infection was significantly lower (in an Egyptian group infected with cattle-derived miracidia) or did not show any significant differences in the other three cases. The total number of metacercariae was significantly higher in the four Egyptian groups. However, snail population and the mammalian origin of F. hepatica had also a significant effect on this parameter. The dissection of snail cadavers showed a significantly higher number of free rediae in the Egyptian groups, even if snail population also had a significant effect on the redial burden. Both Egyptian isolates of F. hepatica could easily develop in French snails, causing a low mortality in snails and inducing a metacercarial production higher than that noted in sympatric infections. However, the mammalian origin of F. hepatica eggs and the quality of snail populations as intermediate hosts had to be taken into account for studying local adaptation in reason of their effects on this process.

Keywords

Shell Height Snail Population Patent Period Mammalian Origin Hepatica Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrous M, Rondelaud D, Dreyfuss G, Cabaret J (1999) Infection of Lymnaea truncatula and Lymnaea glabra by Fasciola hepatica and Paramphistomum daubneyi in farms of central France. Vet Res 30:113–118PubMedGoogle Scholar
  2. Abrous M, Rondelaud D, Dreyfuss G (2000) A field study of natural infections in three freshwater snails with Fasciola hepatica and/or Paramphistomum daubneyi in central France. J Helminthol 74:189–194PubMedCrossRefGoogle Scholar
  3. Amer S, Dar Y, Ichikawa M, Fukuda Y, Tada C, Itagaki T, Nakai Y (2011) Identification of Fasciola species isolated from Egypt based on sequence analysis of genomic (ITS1 and ITS2) and mitochondrial (NDI and COI) gene markers. Parasitol Int 60:5–12PubMedCrossRefGoogle Scholar
  4. Belfaiza M, Rondelaud D, Moncef M, Dreyfuss G (2004) Fasciola hepatica: cercarial productivity of redial generations in long-surviving snails. J Helminthol 78:115–120PubMedCrossRefGoogle Scholar
  5. Boray JC (1966) Studies on the relative susceptibility of some lymnaeids to infection with Fasciola hepatica and F. gigantica and on the adaptation of Fasciola spp. Ann Trop Med Parasitol 60:114–124PubMedGoogle Scholar
  6. Boray JC (1969) Experimental fascioliasis in Australia. Adv Parasitol 7:95–210PubMedCrossRefGoogle Scholar
  7. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat-Theor M 3:1–27CrossRefGoogle Scholar
  8. Coelho LHL, Lima WS, Guimaraes MP (2009) Sympatric and allopatric combinations of Lymnaea columella and Fasciola hepatica from southern and south-eastern Brazil. J Helminthol 83:285–288PubMedCrossRefGoogle Scholar
  9. Ebert D, Lorenzi R (1994) Evolutionary biology. Parasites and polymorphisms. Nature 369:705–706PubMedCrossRefGoogle Scholar
  10. El-Rahimy HH, Mahgoub AMA, El-Gebaly NSM, Mousa WMA, Antably ASAE (2012) Molecular, biochemical and morphometric characterization of Fasciola species potentially causing zoonotic disease in Egypt. Parasitol Res 111:1103–1111PubMedCrossRefGoogle Scholar
  11. Estoup A, Martin O (1996) Marqueurs microsatellites: isolement à l’aide de sondes non-radioactives, caractérisation et mise au point. Protocols available at the address: http://www.inapg.inra.fr/dsa/microsat/microsat.htm
  12. Gandon S (1998) Local adaptation and host-parasite interactions. Trends Ecol Evol 13:214–216PubMedCrossRefGoogle Scholar
  13. Gasnier N, Rondelaud D, Abrous M, Boulard C, Carreras F, Diez-Banos P, Cabaret J (2000) Allopatric combination of Fasciola hepatica and Lymnaea truncatula is more efficient than sympatric ones. Int J Parasitol 30:573–578PubMedCrossRefGoogle Scholar
  14. Goumghar MD, Dreyfuss G, Rondelaud D, Benlemlih M, Cabaret J (2001) More efficient allopatric combinations of Fasciola hepatica and Lymnaea truncatula due to modification of redial development? Parasitol Res 87:1016–1019PubMedGoogle Scholar
  15. Hoeksema JD, Forde SF (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290PubMedCrossRefGoogle Scholar
  16. Hurtrez-Boussès S, Durand P, Jabbour-Zahab R, Guégan JF, Meunier C, Bargues MD, Mas-Coma S, Renaud F (2004) Isolation and characterization of microsatellite markers in the liver fluke (Fasciola hepatica). Mol Ecol 4:689–690CrossRefGoogle Scholar
  17. Lively CM, Dybdahl MP (2000) Parasite adaptation to locally common host genotypes. Nature 405:679–681PubMedCrossRefGoogle Scholar
  18. Lotfy WM, El-Morshedy HN, Abou El-Hoda M, El-Tawila MM, Omar EA, Farag HF (2002) Identification of the Egyptian species of Fasciola. Vet Parasitol 103:323–332PubMedCrossRefGoogle Scholar
  19. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp Math Stat Probab Berkeley 1:281–297Google Scholar
  20. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  21. Meunier C (2002) Fonctionnement des populations hôtes et adaptation au parasite dans l'interaction limnée-douve (Mollusque-Trématode). PhD Thesis, Montpellier II, 107 ppGoogle Scholar
  22. Ollerenshaw CB (1971) Some observations on the epidemiology of fascioliasis in relation to the timing of molluscicide applications in the control of the disease. Vet Rec 88:152–164PubMedCrossRefGoogle Scholar
  23. Periago MV, Valero MA, El Sayed M, Ashrafi K, El Wakeel A, Mohamed MY, Desquesnes M, Curtale F, Mas-Coma S (2008) First phenotypic description of Fasciola hepatica/Fasciola gigantica intermediate forms from the human endemic area of the Nile Delta, Egypt. Infect Genet Evol 8:51–58PubMedCrossRefGoogle Scholar
  24. Préveraud-Sindou M, Rondelaud D (1995) Localization and outcome of Fasciola hepatica sporocysts in Lymnaea truncatula subjected to mono- or plurimiracidial exposures. Parasitol Res 81:265–267PubMedGoogle Scholar
  25. Rondelaud D, Denève C, Belfaiza M, Mekroud A, Abrous M, Moncef M, Dreyfuss G (2004) Variability in the prevalences of infections and cercarial production in Galba truncatula raised on a high quality diet. Parasitol Res 92:242–245PubMedCrossRefGoogle Scholar
  26. Rondelaud D, Fousi M, Vignoles P, Moncef M, Dreyfuss G (2007) Optimization of metacercarial production for three digenean species by the use of Petri dishes for raising lettuce-fed Galba truncatula. Parasitol Res 100:861–865PubMedCrossRefGoogle Scholar
  27. Sanabria R, Mouzet R, Pankrác J, Djuikwo Teukeng FF, Courtioux B, Novobilský A, Höglund J, Rašný M, Vignoles P, Dreyfuss G, Rondelaud D, Romero J (2013) Lymnaea neotropica and Lymnaea viatrix, potential intermediate hosts for Fascioloides magna. J Helminthol (in press)Google Scholar
  28. Torgerson P, Claxton J (1999) Epidemiology and control. Chapter 4. In: Dalton JP (ed) Fasciolosis. CABI Publishing, Oxon, pp 113–149Google Scholar
  29. Vignoles P, Dreyfuss G, Rondelaud D (2002) Larval development of Fasciola hepatica in experimental infections: variations with populations of Lymnaea truncatula. J Helminthol 76:179–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Y. Dar
    • 1
  • M. Lounnas
    • 2
  • F. F. Djuikwo Teukeng
    • 3
    • 4
  • R. Mouzet
    • 4
  • B. Courtioux
    • 4
  • S. Hurtrez-Boussès
    • 2
  • P. Vignoles
    • 4
  • G. Dreyfuss
    • 4
  • D. Rondelaud
    • 4
  1. 1.Department of Zoology, Faculty of ScienceUniversity of TantaTantaEgypt
  2. 2.MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle), UMR (UM 1-UM 2-CNRS 5290-IRD 224), IRDMontpellier Cedex 5France
  3. 3.Department of Animal Biology and Physiology, Faculty of ScienceUniversity of YaoundéYaoundéCameroon
  4. 4.INSERM U 1094, Faculties of Medicine and PharmacyLimoges CedexFrance

Personalised recommendations