Parasitology Research

, Volume 112, Issue 7, pp 2453–2459 | Cite as

Detection of Leishmania infantum and identification of blood meals in Phlebotomus perniciosus from a focus of human leishmaniasis in Madrid, Spain

  • Maribel Jiménez
  • Estela González
  • Andrés Iriso
  • Elisa Marco
  • Ana Alegret
  • Fernando Fúster
  • Ricardo Molina
Original Paper

Abstract

Since 2010, the number of cases of both human visceral leishmaniasis and cutaneous leishmaniasis in southwestern Madrid region (Spain) and more specifically in the town of Fuenlabrada has increased. Direct xenodiagnosis of leishmaniasis proved that hares (Lepus granatensis) from this focus are able to infect with Leishmania infantum colonized Phlebotomus perniciosus. To a better understanding of this focus of leishmaniasis, we conducted an entomological survey using CDC light traps, at the end of the seasonal transmission period of 2011 before the beginning of control measures of the disease, to study the phlebotomine sand flies species involved. Detection of Leishmania DNA in the sand flies captured was studied by kDNA-PCR and cpb-PCR. In addition, blood fed and gravid female P. perniciosus were analysed by a PCR based in vertebrate cytochrome b (cyt b) gene. Taxonomic identification of captured sand flies (n = 174) as P. perniciosus (n = 171) and Sergentomyia minuta (n = 3) together with the analysis of blood feeding in ten sand flies that shows a high preference for hares (n = 6), followed by humans (n = 3), and cats (n = 1) confirm a strong association between P. perniciosus hares and humans in the focus. Moreover, 79 out of 135 (58.5 %) P. perniciosus were positive to L. infantum by PCR approaches. These data support the increase of human leishmaniasis cases in the area and the existence of an unusual sylvatic cycle alternative to the classical domestic one, where the dog is the main reservoir of L. infantum.

Keywords

Visceral Leishmaniasis Leishmaniasis Blood Meal Cutaneous Leishmaniasis Entomological Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Ángeles Vázquez and Ana Tello from the Departamento de Zoología y Antropología Física, Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain for their support. The authors are grateful to the Fuenlabrada and Leganés Councils. This study was partially sponsored and funded by the Subdirección General de Sanidad Ambiental y Epidemiología, the Dirección General de Ordenación e Inspección de la Consejería de Sanidad (CM), the Colegio de Veterinarios de Madrid, and the Colegio de Biólogos de Madrid. This study also was partially funded by EU grant GOCE-2003-010284 EDENext and is cataloged by the EDENext Steering Committee as EDENext 092 (http://www.edenext.eu). The contents of this publication are the sole responsibility of the authors and don’t necessarily reflect the views of the European Commission.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Abassi I, Cunio R, Warburg A (2009) Identification of bloodmeals imbibed by phlebotomine sand flies using cytochrome b PCR and reverse line blotting. Vector-Borne Zoonotic Dis 9(1):79–86CrossRefGoogle Scholar
  2. Alcover MM, Gramiccia M, Di Muccio T, Ballart C, Castillejo S, Picado A, Portús M, Gállego M (2012) Application of molecular techniques in the study of natural infection of Leishmania infantum vectors and utility of sandfly blood meal digestion for epidemiological surveys of leishmaniasis. Parasitol Res 111(2):515–523PubMedCrossRefGoogle Scholar
  3. Alves PC, Ferrand N, Suchentrunk F, Harrisa DJ (2003) Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. Mol Phylogenet Evol 27:70–80PubMedCrossRefGoogle Scholar
  4. Alves-Pires C, Ribeiro H (1991) The phlebotomine sandflies of Portugal. V. Observations on the ecology of the vectors of leishmaniasis in the Alto Douro region. Parassitologia 33:63–68Google Scholar
  5. Aransay AM, Scoulica E, Tselentis Y (2000) Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplastic DNA. Appl Environ Microbiol 66:1933–1938PubMedCrossRefGoogle Scholar
  6. Azizi K, Abedi F, Moemenbellah-Fard MD (2012) Identification and frequency distribution of Leishmania (L.) major infections in sand flies from a new endemic ZCL focus in southeast Iran. Parasitol Res 111:1821–1826PubMedCrossRefGoogle Scholar
  7. Bongiorno G, Habluetzel A, Khoury C, Maroli M (2003) Host preferences of phlebotomine sand flies at a hypoendemic focus of canine leishmaniasis in central Italy. Acta Trop 88:119–123CrossRefGoogle Scholar
  8. Branco S, Alves-Pires C, Maia C, Cortes S, Cristovão JMS, Gonçalves L, Campino L, Afonso MO (2013) Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Central Region, Portugal. Acta Trop 125:339–348PubMedCrossRefGoogle Scholar
  9. Colmenares M, Portús M, Botet J, Dobaño C, Gállego M, Woff M, Seguí G (1995) Identification of blood meals of Phlebotomus perniciosus (Diptera:Psychodidae) in Spain by a competitive enzyme-linked immunosorbent assay biotin/avidin method. J Med Entomol 3:229–233Google Scholar
  10. Conesa Gallego E, Romera Lozano E, Martínez Ortega E (1999) Estudio de las poblaciones de flebotomos (Diptera, Psychodidae) de la Comunidad de Madrid (España). Anales de Biología. 22 (Biología animal, 11) (1997): 43–50Google Scholar
  11. Cruz I (2012) Re-Emerging visceral leishmaniasis in Europe and an outbreak in Spain. XVIII International Congress for Tropical Medicine and Malaria 1:73Google Scholar
  12. El Tai NO, Osman OF, El Far M, Presber W, Schönian G (2000) Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg 94:575–579PubMedCrossRefGoogle Scholar
  13. Gálvez R, Descalzo MA, Miró G, Jiménez MI, Martín O, Dos Santos-Brandao F, Guerrero I, Cubero E, Molina R (2010) Seasonal trends and spatial relations between environmental/meteorological factors and leishmaniosis sand fly vector abundances in Central Spain. Acta Trop 115:95–202PubMedCrossRefGoogle Scholar
  14. Guy MW, Killick-Kendrick R, Gill GS, Rioux JA, Bray RS (1984) Ecology of leishmaniasis in the south of France. 19. Determination of the hosts of Phlebotomus ariasi Tonnoir, 1921 in the Cévennes by bloodmeal analyses. Ann Parasitol Hum Comp 59:449–458PubMedGoogle Scholar
  15. Haouas N, Pesson B, Boudabous R, Dedet J, Badda H, Ravel C (2007) Development of a molecular tool for the identification of Leishmania reservoir by bloodmeal analysis in the insect vectors. AmJTrop Med Hyg 77(6):1054–1059Google Scholar
  16. Hide M, Bañuls A (2006) Species-specific PCR assay for L. infantum/L. donovani discrimination. Acta Trop 100:241–245PubMedCrossRefGoogle Scholar
  17. Kent RJ (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9:4–18PubMedCrossRefGoogle Scholar
  18. Killick-Kendrick R, Rioux JA (2002) Mark-release-recapture sand flies fed on leishmania dogs: the natural life-cycle of Leishmania infantum in Phlebotomus ariasi. Parassitologia 44:67–71PubMedGoogle Scholar
  19. Kobets T, Badalova J, Grekov I, Havelková H, Svobodová M, Lipoldová M (2010) Leishmania parasite detection and quantification using PCR-ELISA. Nat Protoc 5:1074–1080PubMedCrossRefGoogle Scholar
  20. Kuhls K, Mauricio IL, Pratlong F, Presber W, Schönian G (2005) Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes Infect 7:1224–1234PubMedCrossRefGoogle Scholar
  21. Maia C, Afonso MO, Neto L, Dionísio L, Campino L (2009) Molecular detection of Leishmania infantum in naturally infected hlebotomus perniciosus from Algarve Region, Portugal. J Vector Borne Dis 46:268–272PubMedGoogle Scholar
  22. Martín-Sánchez J, Gállego M, Barón S, Castillejo S, Morillas-Marquez F (2006) Pool screen PCR for estimating the prevalence of Leishmania infantum infection in sandflies (Diptera: nematocera, Phlebotomidae). Trans R Soc Trop Med Hyg 100:527–532Google Scholar
  23. Melo-Ferreira J, Boursot P, Carneiro M, Esteves PJ, Farelo L, Alves PC (2012) Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and coalescent simulations. Syst Biol 61:1–15CrossRefGoogle Scholar
  24. Michalsky EM, Fortes-Dias CI, Pimenta PFM, Secundino NFC, Dias ES (2002) Assessment of PCR in the detection of Leishmania spp in experimentally infected individual phlebotomine sandflies (Diptera: psychodidae: phlebotominae). Rev Inst Med Trop S Paulo 44:255–259PubMedCrossRefGoogle Scholar
  25. Molina R, Jiménez MI, Cruz I, Iriso A, Martín-Martín I, Sevillano O, Melero S, Bernal J (2012) The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet Parasitol 190:268–271PubMedCrossRefGoogle Scholar
  26. Morillas F, Sanchíz-Marín MC, Martín-Sánchez J, Acedo Sánchez C (1991) On Phlebotomus perniciosus Newstead, 1911 (Diptera, Phlebotomidae) in the province of Almería in southeastern Spain. Parassitologia 33:437–444Google Scholar
  27. Morillas F, Sanchez Rabasco F, Ocaña J, Martin-Sanchez J, Ocaña-Wihelmi J, Acedo C, Sanchiz-Marin MC (1996) Leishmaniosis in the focus of the Axarquía region, Malaga province, southern Spain: a survey of the human, dog, and vector. Parasitol Res 82:569–570PubMedCrossRefGoogle Scholar
  28. Oshaghi MA, Ravasan NM, Javadian E, Mohebali M, Hajjaran H, Zare Z, Mohtarami F, Rassi Y (2009) Vector incrimination of sand flies in the most important visceral leishmaniasis focus in Iran. Am J Trop Med Hyg 81:572–577PubMedCrossRefGoogle Scholar
  29. Quaresma PF, de Lima Carvalho GM, das Neves Farah Ramos MC, Andrade Filho JD (2012) Natural Leishmania spp. reservoirs and phlebotomine sandfly food source identification in Ibitipoca State Park, Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 107(4):480–485PubMedCrossRefGoogle Scholar
  30. Rioux JA, Guilvard E, Gállego J, Moreno G, Pratlong F, Portús M, Rispail P, Gállego M, Bastien P (1986) Phlebotomus ariasi Tonnoir, 1921 et Phlebotomus perniciosus Newstead, 1911 vecteurs du complexe Leishmania infantum dans un même foyer: Infestations par deux zymodèmes syntopiques. A propos d´une enquête en Catalogne (Espagne). Leishmania: Taxonomie et Phylogenèse. IMEEE (Ed.) Montpellier, France, pp 439–444Google Scholar
  31. Rossi E, Bongiorno G, Ciolli E, Di Muccio T, Scalone A, Gramiccia M, Gradoni L, Maroli M (2008) Seasonal phenology, host-blood feeding preferences and natural Leishmania infection of Phlebotomus perniciosus (Diptera, Psychodidae) in a high-endemic focus of canine leishmaniasis in Rome province, Italy. Acta Trop 105:158–165PubMedCrossRefGoogle Scholar
  32. Sant’Anna MRV, Jones NG, Hindley JA, Mesndes-Sousa AF, Dillon RJ, Cavalcante RR, Alexander B, Bates PA (2008) Bloodmeal identification and parasite detection in laboratory-fed and field-captured Lutzomya longipalpis by PCR using FTA databasing paper. Acta Trop 107:230–237PubMedCrossRefGoogle Scholar
  33. Steuber S, Abdel-Rady A, Clausen PH (2005) PCR-RFLP analysis: a promising technique for host species identification of blood meals from tsetse flies (Diptera: glossinidae). Parasitol Res 97:247–254Google Scholar
  34. Suárez B, Isidoro B, Santos S, Sierra MJ, Molina R, Astray J, Amela C (2012) Situación epidemiológica y de los factores de riesgo de transmisión de Leishmania infantum en España. Rev Esp Salud Pública 86:555–564Google Scholar
  35. Tiwananthagorn S, Bhutto AM, Baloch JH, Soomro FR, Kawamura Y, Nakao R, Aoshima K, Nonaka N, Oku Y, Katakura K (2012) Zoophilic feeding behavior of phlebotomine sand flies in the endemic areas of cutaneous leishmaniasis of Sindh Province, Pakistan. Parasitol Res 111:125–133PubMedCrossRefGoogle Scholar
  36. Torina A, Sole M, Reale S, Vitale F, Caracappa S (2008) Use of Phlebotomine Sand Flies as indicator of Leishmania prevalence in an endemic area. Animal biodiversity and emerging diseases. Ann NY Acad Sci 1149:355–357PubMedCrossRefGoogle Scholar
  37. World Health Organization (2010) Control of Leishmaniases. WHO Technical Report Series no. 949. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22–26 March 2010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maribel Jiménez
    • 1
  • Estela González
    • 1
  • Andrés Iriso
    • 2
  • Elisa Marco
    • 3
  • Ana Alegret
    • 3
  • Fernando Fúster
    • 2
  • Ricardo Molina
    • 1
  1. 1.Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
  2. 2.Subdirección General de Sanidad Ambiental y Epidemiología, Dirección General de Ordenación e Inspección, Consejería de Sanidad, Comunidad de MadridMadridSpain
  3. 3.Concejalía de Salud, Consumo y Cooperación, Ayuntamiento de FuenlabradaMadridSpain

Personalised recommendations