Parasitology Research

, Volume 112, Issue 5, pp 2037–2043 | Cite as

Hidden haemosporidian infections in Ruffs (Philomachus pugnax) staging in Northwest Europe en route from Africa to Arctic Europe

  • Luísa Mendes
  • Sara Pardal
  • Joana Morais
  • Sandra Antunes
  • Jaime A. Ramos
  • Javier Perez-Tris
  • Theunis Piersma
Original Paper


In their African freshwater wintering habitats, shorebirds show a high prevalence of blood parasites, whereas no parasites are detected elsewhere along the migration route. We looked at two genera of haemosporidian parasites, Haemoproteus and Plasmodium, in the long-distance migrating Ruff (Philomachus pugnax) along a geographical/seasonal gradient to verify the infection pattern and examine possible hidden organ infections at European staging areas. We amplified parasite DNA from blood of 53 healthy birds wintering in Mali, 53 samples of seven organ tissues (spleen, liver, kidneys, heart, lungs, brain, and pectoral muscle) from healthy individuals caught during spring migration, and 18 weak birds found sick in summer in The Netherlands. We confirm that Ruffs wintering in Africa carried blood infections and that some infections developed into hidden organ infections during spring migration. Moreover, sick birds either had new infections (in one juvenile) or relapses (in an adult harboring an African lineage). Our results suggest that some parasites develop latency. This strategy may be beneficial for the parasite as it may take control over reappearance in the blood to help further transmission.


Plasmodium Niger Delta Spring Migration Haemosporidian Parasite African Lineage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the many volunteer bird catchers in southwest Friesland that captured the Ruffs, Leon Kelder for collecting and making available to diseased birds from Kreupel, and Deborah M. Buehler and Yvonne Verkuil for their valuable comments on the manuscript. This is a contribution from the Moncloa Campus of International Excellence of the Complutense and the Polytechnic Universities of Madrid (through JPT).

Financial support

This project was supported by the Fundação para a Ciência e Tecnologia (ref: PTDC/BIA-BDE/64063/2006). LM was also supported by FCT (ref: SFRH/BPD/20682/2004). JPT was supported by the Spanish Ministry of Science and Innovation (grant no. CGL2010-15734/BOS). TP was supported by an operational grant from the University of Groningen.


  1. Atkinson C, Dusek R, Woods K, Iko W (2000) Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis 36:197–204PubMedGoogle Scholar
  2. Atkinson CT (2008a) Avian malaria. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases in wild birds. Willey-Blackwell, Ames, pp 35–53CrossRefGoogle Scholar
  3. Atkinson CT (2008b) Haemoproteus. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases in wild birds. Willey-Blackwell, Ames, pp 13–34CrossRefGoogle Scholar
  4. Atkinson CT, Van Riper C III (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Loye JE, Zuk M (eds) Bird-parasite interactions: ecology, evolution and behavior. Oxford University Press, Oxford, pp 13–48Google Scholar
  5. Beadell J, Covas R, Gebhard C, Ishtiaq F, Melo M, Schmidt B, Perkins S, Graves G, Fleischer R (2009) Host associations and evolutionary relationships of avian blood parasites from West Africa. Int J Parasitol 39:257–266. doi: 10.1016/j.ijpara.2008.06.005 PubMedCrossRefGoogle Scholar
  6. Beadell J, Ishtiaq F, Covas R, Melo M, Warren B, Atkinson C, Bensch S, Graves G, Jhala Y, Peirce M et al (2006) Global phylogeographic limits of Hawaii's avian malaria. Proc R Soc Lond Ser B Biol Sci 273:2935–2944. doi: 10.1098/rspb.2006.3671 CrossRefGoogle Scholar
  7. Bensch S, Hellgren O, Perez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resourc 9:1353–1358. doi: 10.1111/j.1755-0998.2009.02692.x CrossRefGoogle Scholar
  8. Bos D, Grigoras I, Ndiaye A (2006) Land cover and avian biodiversity in rice fields and mangroves of West Africa. A&W-report (eds), Dakar, Senegal/ Veenwouden, The NetherlandsGoogle Scholar
  9. Cumming GS, Shepard E, Okanga S, Caron A, Ndlovu M, Peters JL (2012) Host associations, biogeography, and phylogenetics of avian malaria in southern African waterfowl. Parasitology 12:1–9. doi: 10.1017/S0031182012001461 Google Scholar
  10. D’Amico V, Baker A (2010) A rare case of Plasmodium (Haemamoeba) relictum infection in a free-living Red Knot (Calidris canutus rufa, Scolopacidae). J Ornithol 151:951–954. doi: 10.1007/s10336-010-0566-0 CrossRefGoogle Scholar
  11. DeGaetano AT (2005) Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey. Int J Biometeorol 49:345–353. doi: 10.1007/s00484-004-0242-2 PubMedCrossRefGoogle Scholar
  12. Fontenille D, Lochouarn L, Diatta M, Sokhna C, Dia I, Diagne N, Lemasson JJ, Ba K, Tall A, Rogier C et al (1997) Four years' entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis. Trans R Soc Trop Med Hyg 91:647–652. doi: 10.1016/s0035-9203(97)90506-x PubMedCrossRefGoogle Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  14. Ishtiaq F, Gering E, Rappole JH, Rahmani AR, Jhala YV, Dove CJ, Milensky C, Olson SL, Peirce MA, Fleischer RC (2007) Prevalence and diversity of avian Hematozoan parasites in Asia: a regional survey. J Wildl Dis 43:382–398PubMedGoogle Scholar
  15. Jukema J, Piersma T, Hulscher JB, Bunskoeke EJ, Koolhaas A, Veenstra A (2001) Goudplevieren en wilsterflappers: eeuwenoude fascinatie voor trekvogels (Golden plovers and plover netters: a deeply rooted fascination with migrating birds). Fryske Akademy Ljouwert and KNNV Uitgeverij, Utrecht, The NetherlandsGoogle Scholar
  16. LaPointe DA, Goff ML, Atkinson CT (2009) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai'i. J Parasitol 96:318–324. doi: 10.1645/GE-2290.1 CrossRefGoogle Scholar
  17. Mendes L, Piersma T, Lecoq M, Spaans B, Ricklefs R (2005) Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109:396–404. doi: 10.1111/j.0030-1299.2005.13509.x CrossRefGoogle Scholar
  18. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G (2002) The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 39:833–841. doi: 10.1603/0022-2585-39.6.833 PubMedCrossRefGoogle Scholar
  19. Muturi E, Mwangangi J, Jacob B, Shililu J, Mbogo C, Githure J, Novak R (2008) Spatio-temporal dynamics of immature culicines (subfamily Culicinae) and their larval habitats in Mwea Rice Scheme, Kenya. Parasitol Res 104:851–859PubMedCrossRefGoogle Scholar
  20. Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiūnas G, Russell AF, Smith TB (2011) Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol 20:1049–1061. doi: 10.1111/j.1365-294X.2010.04904.x PubMedCrossRefGoogle Scholar
  21. Pagenkopp K, Klicka J, Durrant K, Garvin J, Fleischer R (2008) Geographic variation in malarial parasite lineages in the common yellowthroat (Geothlypis trichas). Conserv Genet 9:1577–1588. doi: 10.1007/s10592-007-9497-6 CrossRefGoogle Scholar
  22. Palinauskas V, Valkiunas G, Bolshakov C, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380. doi: 10.1016/j.exppara.2008.09.001 PubMedCrossRefGoogle Scholar
  23. Palinauskas V, Valkiunas G, Krizanauskiene A, Bensch S, Bolshakov C (2009) Plasmodium relictum (lineage P-SGS1): further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone (TM). Exp Parasitol 123:134–139. doi: 10.1016/j.exppara.2009.06.012 PubMedCrossRefGoogle Scholar
  24. Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolved with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80:623–631CrossRefGoogle Scholar
  25. Piersma T (2003) ‘Coastal’ versus ‘inland’ shorebird species: interlinked fundamental dichotomies between their life- and demographic histories? Wader Study Group Bull 100:5–9Google Scholar
  26. Piersma T, Gudmundsson GA, Lilliendahl K (1999) Rapid changes in the size of different functional organ and muscle groups during refueling in a long–distance migrating shorebird. Physiol Biochem Zool 72:405–415PubMedCrossRefGoogle Scholar
  27. Rakhimberdiev E, Verkuil YI, Saveliev AA, Väisänen RA, Karagicheva J, Soloviev MY, Tomkovich PS, Piersma T (2011) A global population redistribution in a migrant shorebird detected with continent-wide qualitative breeding survey data. Divers Distrib 17:144–151. doi: 10.1111/j.1472-4642.2010.00715.x CrossRefGoogle Scholar
  28. Schroeder J, Kentie R, Van der Velde M, Hooijmeijer JCEW, Both C, Haddrath O, Baker AJ, Piersma T (2010) Linking intronic polymorphism on the CHD1-Z gene with fitness correlates in black-tailed godwits Limosa l. limosa. Ibis 152:368–377. doi: 10.1111/j.1474-919X.2009.01005.x CrossRefGoogle Scholar
  29. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  30. Trawinski P, Mackay D (2008) Meteorologically conditioned time-series predictions of West Nile virus vector mosquitoes. Vector Borne Zoonotic Dis 8:505–521. doi: 10.1089/vbz.2007.0202 PubMedCrossRefGoogle Scholar
  31. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca RatonGoogle Scholar
  32. Valkiūnas G, Iezhova T, Loiseau C, Sehgal R (2009) Nested Cytochrome B polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds. J Parasitol 95:1512–1515. doi: 10.1645/GE-2105.1 PubMedCrossRefGoogle Scholar
  33. van Rhijn J (1991) The Ruff. London T. & A.D. PoyserGoogle Scholar
  34. Ventim R, Ramos JA, Osório H, Lopes RJ, Pérez-Tris J, Mendes L (2012) Avian malaria infections in western European mosquitoes. Parasitol Res 111:637–645. doi: 10.1007/s00436-012-2880-3 PubMedCrossRefGoogle Scholar
  35. Verkuil YI, Karlionova N, Rakhimberdiev EN, Jukema J, Wijmenga JJ, Hooijmeijer JCEW, Pinchuk P, Wymenga E, Baker AJ, Piersma T (2012a) Losing a staging area: Eastward redistribution of Afro-Eurasian ruffs is associated with deteriorating fuelling conditions along the western flyway. Biol Conserv 149:51–59. doi: 10.1016/j.biocon.2012.01.059 CrossRefGoogle Scholar
  36. Verkuil YI, Piersma T, Jukema J, Hooijmeijer JCEW, Zwarts L, Baker AJ (2012b) The interplay between habitat availability and population differentiation: a case study on genetic and morphological structure in an inland wader (Charadriiformes). Biol J Linn Soc 106:641–656. doi: 10.1111/j.1095-8312.2012.01878.x CrossRefGoogle Scholar
  37. Waldenström J, Bensch S, Hasselquist D, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194. doi: 10.1645/GE-3221RN PubMedCrossRefGoogle Scholar
  38. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554. doi: 10.1046/j.1365-294X.2002.01523.x PubMedCrossRefGoogle Scholar
  39. Yohannes E, Krizanauskiene A, Valcu M, Bensch S, Kempenaers B (2009) Prevalence of malaria and related haemosporidian parasites in two shorebird species with different winter habitat distribution. J Ornithol 150:287–291. doi: 10.1007/s10336-008-0349-z CrossRefGoogle Scholar
  40. Zwarts L, Bijlsma RG, Kamp J, Wymenga E (2009) Living on the edge: wetlands and birds in a changing sahel. KNNV Publishing, Zeist, The NetherlandsGoogle Scholar
  41. Zehtindjiev P, Ilieva M, Westerdahl H, Hansson B, Valkiunas G, Bensch S (2008) Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Exp Parasitol 119:99–110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luísa Mendes
    • 1
  • Sara Pardal
    • 1
  • Joana Morais
    • 1
  • Sandra Antunes
    • 1
  • Jaime A. Ramos
    • 1
  • Javier Perez-Tris
    • 2
  • Theunis Piersma
    • 3
    • 4
  1. 1.Institute of Marine Research (IMAR-CMA), Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Departamento de Zoología y Antropología Física, Facultad de BiologíaUniversidad Complutense de MadridMadridSpain
  3. 3.Animal Ecology Group, Centre for Ecological and Evolutionary StudiesUniversity of GroningenGroningenThe Netherlands
  4. 4.Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands

Personalised recommendations