Parasitology Research

, Volume 112, Issue 3, pp 991–999

Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector

  • Barbara Conti
  • Michele Leonardi
  • Luisa Pistelli
  • Raffaele Profeti
  • Ines Ouerghemmi
  • Giovanni Benelli
Original Paper

Abstract

Rutaceae are widely recognized for their toxic and repellent activity exerted against mosquitoes. In our research, the essential oils extracted from fresh leaves of wild and cultivated plants of Ruta chalepensis L. (Rutaceae) were evaluated for larvicidal and repellent activity against the Asian tiger mosquito, Aedes albopictus Skuse (Diptera: Culicidae), currently the most invasive mosquito worldwide. In this research, gas chromatography and gas chromatography–mass spectrometry analyses of the essential oils from wild and cultivated plants showed only quantitative differences, in particular relatively to the amounts of ketone derivatives, while the qualitative profile evidenced a similar chemical composition. Both essential oils from wild and cultivated R. chalepensis plants were able to exert a very good toxic activity against A. albopictus larvae (wild plants, LC50 = 35.66 ppm; cultivated plants, LC50 = 33.18 ppm), and mortality was dosage dependent. These data are the first evidence of the toxicity of R. chalepensis against mosquitoes. Furthermore, the R. chalepensis essential oil from wild plants was an effective repellent against A. albopictus, also at lower dosages: RD50 was 0.000215 μL/cm2 of skin, while RD90 was 0.007613 μL/cm2. Our results clearly evidenced that the larvicidal and repellent activity of R. chalepensis essential oil could be used for the development of new and safer products against the Asian tiger mosquito.

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267Google Scholar
  2. Adams RP (1995) Identification of essential oils components by gas chromatography/mass spectroscopy. Carol Stream, AlluredGoogle Scholar
  3. Al-mazra’awi MS, Ateyyat M (2009) Insecticidal and repellent activities of medicinal plant extracts against the sweet potato whitefly, Bemisia tabaci (Hom.: Aleyrodidae) and its parasitoid Eretmocerus mundus (Hym.: Aphelinidae). J Pest Sci 82:149–154CrossRefGoogle Scholar
  4. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472PubMedCrossRefGoogle Scholar
  5. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490PubMedCrossRefGoogle Scholar
  6. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85CrossRefGoogle Scholar
  7. Benelli G, Flamini G, Canale A, Cioni PL, Conti B (2012a) Toxicity evaluation of different essential oil formulations against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera Tephritidae). Crop Protect 42:223–229CrossRefGoogle Scholar
  8. Benelli G, Flamini G, Canale A, Molfetta I, Cioni PL, Conti B (2012b) Repellence of Hyptis suaveolens L. (Lamiaceae) whole essential oil and major constituents against adults of the granary weevil Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). Bull Insectol 65:177–183Google Scholar
  9. Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717PubMedCrossRefGoogle Scholar
  10. Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1462PubMedCrossRefGoogle Scholar
  11. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012a) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021PubMedCrossRefGoogle Scholar
  12. Conti B, Benelli G, Leonardi M, Afifi UF, Cervelli C, Profeti R, Pistelli L, Canale A (2012b) Repellent effect of Salvia dorisiana, S. longifolia and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 111:291–299PubMedCrossRefGoogle Scholar
  13. Elango G, Rahuman AA, Kamaraj C, Bagavan A, Zahir AA (2011) Efficacy of medicinal plant extracts against malarial vector, Anopheles subpictus Grassi. Parasitol Res 108:1437–1445PubMedCrossRefGoogle Scholar
  14. Estrada-Franco J (1995) Biology, disease relationship, and control of Aedes albopictus. PAHO technical paper p. 42Google Scholar
  15. Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. New Engl J Med 347:13–18PubMedCrossRefGoogle Scholar
  16. Giatropoulos A, Papachristos DP, Kimbaris A, Koliopoulos G, Polissiou MG, Emmanouel N, Michaelakis A (2012) Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol Res. doi:10.1007/s00436-012-3074-8
  17. Gillij YG, Gleiser RM, Zygadlo JA (2008) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol 99:2507–2515PubMedCrossRefGoogle Scholar
  18. Gleiser RM, Bonino MA, Zygadlo JA (2011) Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol Res 108:69–78PubMedCrossRefGoogle Scholar
  19. Govindarajan M (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pacif J Tropic Med 2010:874–877CrossRefGoogle Scholar
  20. Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620PubMedCrossRefGoogle Scholar
  21. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367PubMedCrossRefGoogle Scholar
  22. Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227PubMedCrossRefGoogle Scholar
  23. Guarrera PM (1999) Traditional antihelmintic, antiparasitic and repellent uses of plants in Central Italy. J Ethnopharmacol 68:183–192PubMedCrossRefGoogle Scholar
  24. Hadis LMM, Meknonnen V, Asfar T (2003) Field trials on repellent activity of four plant products against mainly Mansonia population in Western Ethiopia. Phytother Res 17:202–205PubMedCrossRefGoogle Scholar
  25. Hafeez F, Akram W, Shaalan EA (2011) Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol Res 109:221–229PubMedCrossRefGoogle Scholar
  26. James AA (1992) Mosquito molecular genetics: the hands that feed bite back. Science 257:37–38PubMedCrossRefGoogle Scholar
  27. Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574PubMedCrossRefGoogle Scholar
  28. Kamgang B, Marcombe S, Chandre F, Nchoutpouen E, Nwane P, Etang J, Corbelle V, Paupy C (2011) Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Par Vect 4:79CrossRefGoogle Scholar
  29. Kamsuk K, Choochote W, Chaithong U, Jitpakdi A, Tippawangkosol P, Riyong D, Pitasawat B (2007) Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field application. Parasitol Res 100:339–345PubMedCrossRefGoogle Scholar
  30. Kauffman WC, Kennedy GG (1989) Toxicity of allelochemicals from wild insect-resistant tomato Lycopersicon hirsutum f. glabratum to Campoletis sonorensis, a parasitoid of Heliothis zea. J Chem Ecol 15:2051–2060CrossRefGoogle Scholar
  31. Klun JA, Khrimian A, Debboun M (2006) Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi. J Med Entomol 43:34–39PubMedCrossRefGoogle Scholar
  32. Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335PubMedCrossRefGoogle Scholar
  33. Konig WA, Hochmuth DH, Joulain D (2001) Terpenoids and related constituents of essential oils. Library of Mass Finder 2.1, Institute of Organic Chemistry, Hamburg, GermanyGoogle Scholar
  34. Koren G, Matsui D, Bailey B (2003) DEET-based insect repellents: safety implications for children and pregnant and lactating women. Canad Med Assoc J 169:209–212Google Scholar
  35. Kovendan K, Arivoli S, Maheshwaran R, Baskar K, Vincent S (2012) Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 111:1025–1035PubMedCrossRefGoogle Scholar
  36. Lafferty FW, Stauffer DB (1994) Wiley Registry of Mass Spectral Data, 6th edn. Mass Spectometry Library Search System Bench-Top/PBM, Version 3.10d. Palisade, NewfieldGoogle Scholar
  37. Lapied B, Pennetier C, Apaire-Marchais V, Licznar P, Corbel V (2009) Innovative applications for insect viruses: towards insecticide sensitization. Trends Biotechnol 4:190–198CrossRefGoogle Scholar
  38. Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025PubMedCrossRefGoogle Scholar
  39. Mendesila E, Tadesseb M, Negashc M (2012) Efficacy of plant essential oils against two major insect pests of coffee (Coffee berry borer, Hypothenemus hampei, and antestia bug, Antestiopsis intricata) and maize weevil, Sitophilus zeamais. Archiv Phytopathol Plant Protect 45:366–372CrossRefGoogle Scholar
  40. Moore SJ, Lenglet A, Hill N (2002) Field evaluation of three plant-based insect repellents against malaria vectors in Vaca Diez Province, the Bolivian Amazon. J Am Mosq Control Assoc 18:107–110PubMedGoogle Scholar
  41. National Institute of Standards and Technology (1999) NIST/EPA/NIH Mass Spectral Library, Pc Version 1.7. Perkin Elmer, NorwalkGoogle Scholar
  42. Noudjou F, Kouninki H, Ngamo LST, Maponmestsem PM, Ngassoum M, Hance T, Haubruge E, Malaisse F, Marlier M, Lognay GC (2007) Effect of site location and collecting period on the chemical composition of Hyptis spicigera Lam. An insecticidal essential oil from North-Cameroon. J Essent Oil Res 19:597–601CrossRefGoogle Scholar
  43. Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A (2004) Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochem 65:2797–2802CrossRefGoogle Scholar
  44. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb Infect 11:1177–1185CrossRefGoogle Scholar
  45. Peng Z, Yang J, Wang H, Simons FER (1999) Production and characterisation of monoclonal antibodies to two new mosquito Aedes aegypti salivary protein. Insect Biochem Mol Biol 29:909–914PubMedCrossRefGoogle Scholar
  46. Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O (2011) Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res 109:425–430PubMedCrossRefGoogle Scholar
  47. Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Tropical Biomed 23:208–212Google Scholar
  48. Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugama S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555PubMedCrossRefGoogle Scholar
  49. Rai KS (1991) Aedes albopictus in the Americas. Annu Rev Entomol 36:459–484PubMedCrossRefGoogle Scholar
  50. Rajkumar S, Jebanesan A (2005) Repellency of volatile oils from Moschosma polystachyum and Solanum xanthocarpum against filarial vector Culex quinquefasciatus Say. Tropical Biomed 22:139–142Google Scholar
  51. Reiter P, Sprenger D (1987) The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J Am Mosq Control Assoc 3:494–501PubMedGoogle Scholar
  52. Robert LL, Olson JK (1989) Susceptibility of female Aedes albopictus from Texas to commonly used adulticides. J Am Mosq Control Assoc 5:251–253PubMedGoogle Scholar
  53. Severini C, Romi R, Marinucci M, Rajmond M (1993) Mechanism of insecticide resistance in field populations of Culex pipiens from Italy. J Am Mosq Control Assoc 9:164–168PubMedGoogle Scholar
  54. Skuse F (1894) The banded mosquito of Bengal. Indian Mus Notes 3:20Google Scholar
  55. Strickman D, Frances SP, Debboun M (2009) Put on something natural. In: Prevention of bugs, bites, stings and disease. Oxford University Press, New YorkGoogle Scholar
  56. Sudakin DL, Trevathan WR (2003) DEET: a review and update of safety and risk in the general population. J Toxicol Clin Toxicol 41:831PubMedCrossRefGoogle Scholar
  57. Tabanca N, Demirci B, Kiyan HT, Ali A, Bernier UR, Wedge DE, Khan IA, Başer KHC (2012) Repellent and larvicidal activity of Ruta graveolens essential oil and its major individual constituents against Aedes aegypti. Planta Med 2012:78–90Google Scholar
  58. Tchoumbougang F, Amvam Zollo PH, Fecam Boyom F, Nyegue MA, Bessière JM (2005) Aromatic plants of Tropical Central Africa. XLVIII. Comparative study of the essential oils of four Hyptis species from Cameroon: H. lanceolata Poit., H. pectinata (L.) Poit., H. spicigera Lam. and H. suaveolens Poit. Flavour Fragr J 20:340–343CrossRefGoogle Scholar
  59. Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vect Borne Dis 44:198–204Google Scholar
  60. Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytother Res 19:303–309PubMedCrossRefGoogle Scholar
  61. WHO (1981) Instruction for determining the susceptibility or resistance of mosquito larvae to insecticide. WHO/VBC/81.807. Control of tropical diseases. World Health Organization, GenevaGoogle Scholar
  62. WHO (2009) Guidelines for efficacy testing of mosquito repellents for human skin. WHO/HTM/NTD/WHOPES/2009.4. Control of neglected tropical diseases. World Health Organization, GenevaGoogle Scholar
  63. Yamani AS, Mehlhorn H, Adham FK (2012) Yolk protein uptake in the oocyte of the Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae). Parasitol Res 111:1315–1324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barbara Conti
    • 1
  • Michele Leonardi
    • 2
  • Luisa Pistelli
    • 2
  • Raffaele Profeti
    • 1
  • Ines Ouerghemmi
    • 3
  • Giovanni Benelli
    • 1
  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  2. 2.Department of Pharmaceutical SciencesUniversity of PisaPisaItaly
  3. 3.Laboratoire des Substances BioactivesCentre de BiotechnologieHammam LifTunisia

Personalised recommendations