Parasitology Research

, Volume 112, Issue 2, pp 829–838 | Cite as

Candidatus Mesochlamydia elodeae” (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae

  • Daniele Corsaro
  • Karl-Dieter Müller
  • Jost Wingender
  • Rolf Michel
Original Paper


Vannella sp. isolated from waterweed Elodea sp. was found infected by a chlamydia-like organism. This organism behaves like a parasite, causing the death through burst of its host. Once the vannellae degenerated, the parasite was successfully kept in laboratory within a Saccamoeba sp. isolated from the same waterweed sample, which revealed in fine through electron microscopy to harbor two bacterial endosymbionts: the chlamydial parasite we introduce and another endosymbiont initially and naturally present in the host. Herein, we provide molecular-based identification of both the amoeba host and its two endosymbionts, with special focus on the chlamydia parasite. High sequence similarity values of the 18S rDNA permitted to assign the amoeba to the species Saccamoeba lacustris (Amoebozoa, Tubulinea). The bacterial endosymbiont naturally harbored by the host belonged to Sphingomonas koreensis (Alpha-Proteobacteria). The chlamydial parasite showed a strict specificity for Saccamoeba spp., being unable to infect a variety of other amoebae, including Acanthamoeba, and it was itself infected by a bacteriophage. Sequence similarity values of the 16S rDNA and phylogenetic analysis indicated that this strain is a new member of the family Parachlamydiaceae, for which we propose the name “Candidatus Mesochlamydia elodeae.”


Testate Amoeba Limax Infected Amoeba Acanthamoeba Strain Amoeba Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Elke Schneider and Liane Junglas from the Electron Microscopy Department for the excellent technical assistance (Head of the department: Dr. Bärbel Hauröder). DC was partially supported by Novartis Foundation.

Supplementary material

436_2012_3213_Fig6_ESM.jpg (34 kb)
Supplementary Figure 1

In situ identification of Mesochlamydia strain KV in Saccamoeba lacustris cells by FISH using Cy3-labeled probe Chls‐523, which targets all Chlamydiae (red) (Poppert et al. 2002). 1000×. (JPEG 34 kb)

436_2012_3213_MOESM1_ESM.tif (732 kb)
High resolution image (TIFF 731 kb)
436_2012_3213_MOESM2_ESM.xls (32 kb)
Supplementary Table 1 Pair-wise sequence similarity values for near full 16S rDNA of major representing taxa of Chlamydiae (XLS 32 kb)
436_2012_3213_MOESM3_ESM.xls (22 kb)
Supplementary Table 2 Pair-wise sequence similarity values within the family Parachlamydiaceae (XLS 21 kb)


  1. Amann R, Springer N, Schönhuber W, Ludwig W, Schmid EN, Müller K-D, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63:115–121PubMedGoogle Scholar
  2. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368PubMedCrossRefGoogle Scholar
  3. Bertaux J, Schmid M, Chemidlin Prevost-Boure N, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:290–306CrossRefGoogle Scholar
  4. Collingro A, Toenshoff ER, Taylor MW, Fritsche TR, Wagner M, Horn M (2005) ‘Candidatus Protochlamydia amoebophila’, an endosymbiont of Acanthamoeba spp. Int J Syst Evol Microbiol 55:1863–1866PubMedCrossRefGoogle Scholar
  5. Corsaro D, Greub G (2006) Pathogenic potential of novel chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria. Clin Microbiol Rev 19:283–297PubMedCrossRefGoogle Scholar
  6. Corsaro D, Venditti D (2004) Emerging chlamydial infection. Crit Rev Microbiol 30:75–106PubMedCrossRefGoogle Scholar
  7. Corsaro D, Venditti D (2006) Diversity of the parachlamydiae in the environment. Crit Rev Microbiol 32:185–199PubMedCrossRefGoogle Scholar
  8. Corsaro D, Venditti D (2009) Detection of Chlamydiae from freshwater environments by PCR, amoeba coculture and mixed coculture. Res Microbiol 160:547–552PubMedCrossRefGoogle Scholar
  9. Corsaro D, Work TM (2012) Candidatus Renichlamydia lutjani, a Gram-negative bacterium in internal organs of blue-striped snapper Lutjanus kasmira from Hawaii. Dis Aquat Organ 98:249–254PubMedCrossRefGoogle Scholar
  10. Corsaro D, Venditti D, Le Faou A, Guglielmetti P, Valassina M (2001) A new chlamydia-like 16S rDNA sequence from a clinical sample. Microbiology 147:515–516PubMedGoogle Scholar
  11. Corsaro D, Venditti D, Valassina M (2002) New chlamydial lineages from freshwater samples. Microbiology 148:343–344PubMedGoogle Scholar
  12. Corsaro D, Valassina M, Venditti D (2003) Increasing diversity within Chlamydiae. Crit Rev Microbiol 29:37–78PubMedCrossRefGoogle Scholar
  13. Corsaro D, Thomas V, Goy G, Venditti D, Radek R, Greub G (2007) ‘Candidatus Rhabdochlamydia crassificans’, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst Appl Microbiol 30:221–228PubMedCrossRefGoogle Scholar
  14. Corsaro D, Feroldi V, Saucedo G, Ribas F, Loret J-F, Greub G (2009) Novel Chlamydiales strains isolated from a water treatment plant. Environ Microbiol 11:188–200PubMedCrossRefGoogle Scholar
  15. Corsaro D, Michel R, Walochnik J, Müller K-D, Greub G (2010) Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia ‘Candidatus Metachlamydia lacustris’ (Chlamydiae: Parachlamydiaceae). Eur J Protistol 46:86–95PubMedCrossRefGoogle Scholar
  16. Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, Haynes M, Liu H, Furlan M, Wegley L, Chau B, Ruan Y, Hall D, Angly FE, Edwards RA, Li L, Thurber RV, Reid RP, Siefert J, Souza V, Valentine DL, Swan BK, Breitbart M, Rohwer F (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452:340–343PubMedCrossRefGoogle Scholar
  17. Dyková I, Lom J (2004) Advances in the knowledge of amphizoic amoebae infecting fish. Folia Parasitol 51:81–97PubMedGoogle Scholar
  18. Dyková I, Kostka M, Pecková H (2008) Morphology and SSU rDNA-based phylogeny of a new strain of Saccamoeba sp. (Saccamoeba Frenzel, 1892, Amoebozoa). Acta Protozool 47:397–405Google Scholar
  19. Dyková I, Kostka M, Pecková H (2011) Three new species of the amoebozoan genus Vexillifera Schaeffer, 1926. Acta Protozool 50:55–63Google Scholar
  20. Everett KDE, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440PubMedCrossRefGoogle Scholar
  21. Everson JS, Garner SA, Lambden PR, Fane BA, Clarke IN (2003) Host range of chlamydiaphages phiCPAR39 and Chp3. J Bacteriol 185:6490–6492PubMedCrossRefGoogle Scholar
  22. Evstigneeva A, Raoult D, Karpachevskiy L, La Scola B (2009) Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae. Microbiology 155:657–664PubMedCrossRefGoogle Scholar
  23. Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900PubMedCrossRefGoogle Scholar
  24. Fritsche TR, Gautom RK, Seyedirashti S, Bergeron DL, Lindquist TD (1993) Occurrence of bacteria endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J Clin Microbiol 31:1122–1126PubMedGoogle Scholar
  25. Fritsche TR, Horn M, Wagner M, Herwig RP, Schleifer K-H, Gautom RK (2000) Phylogenetic diversity among geographycally dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl Environ Microbiol 66:2613–2619PubMedCrossRefGoogle Scholar
  26. Grimm D, Ludwig W, Brandt BC, Michel R, Schleifer K-H, Hacker J, Steinert M (2001) Development of 18S rRNA-targeted oligonucleotide probes for specific detection of Hartmannella and Naegleria in Legionella-positive environmental samples. Syst Appl Microbiol 24:76–82PubMedCrossRefGoogle Scholar
  27. Harshbarger JC, Chang SC, Otto SV (1977) Chlamydiae (with phages), mycoplasmas, and rickettsiae in Chesapeake Bay bivalves. Science 196:666–668PubMedCrossRefGoogle Scholar
  28. Horn M, Wagner M (2001) Evidence for additional genus-level diversity of Chlamydiales in the environment. FEMS Microbiol Lett 204:71–74PubMedCrossRefGoogle Scholar
  29. Horn M, Wagner M (2004) Bacterial endosymbionts of free-living amoebae. J Eukaryot Microbiol 51:509–514PubMedCrossRefGoogle Scholar
  30. Horn M, Wagner M, Müller K-D, Schmid EN, Fritsche TR, Schleifer KH, Michel R (2000) Neochlamydia hartmannellae gen. nov., sp. nov., (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146:1231–1239PubMedGoogle Scholar
  31. Israelsson O (2008) Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). J Invertebr Pathol 96:213–220CrossRefGoogle Scholar
  32. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful ghraphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCrossRefGoogle Scholar
  33. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR, Park YH (2001) Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498PubMedGoogle Scholar
  34. López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554PubMedCrossRefGoogle Scholar
  35. Matsuo J, Kawaguchi K, Nakamura S, Hayashi Y, Yoshida M, Takahashi K, Mizutani Y, Yao T, Yamaguchi H (2010) Survival and transfer ability of phylogenetically diverse bacterial endosymbionts in environmental Acanthamoeba isolates. Environ Microbiol Rep 2:524–533CrossRefGoogle Scholar
  36. Michel R, Hauröder-Philippczyk B, Müller K-D, Weishaar I (1992) Observations on acanthamoebae from nasal mucosa infected by obligate intracellular parasites. Zbl Bakt Hyg 325:56Google Scholar
  37. Michel R, Hauröder-Philippvzyk B, Müller K-D, Weishaar I (1994) Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite. Eur J Protistol 30:104–110CrossRefGoogle Scholar
  38. Michel R, Müller K-D, Hauröder B, Zöller L (2000) A coccoid bacterial parasite of Naegleria sp. (Schizopyrenida: Vahlkampfiidae) inhibits cyst formation of its host but not transformation to the flagellate stage. Acta Protozool 39:199–207Google Scholar
  39. Michel R, Schmid EN, Gmeiner G, Müller K-D, Hauröder B (2001) Evidence for bacteriophages within Gram-negative cocci obligate endoparasitic bacteria of Naegleria sp. Acta Protozool 40:229–232Google Scholar
  40. Michel R, Steinert M, Zöller L, Hauröder B, Hennig K (2004) Free-living amoebae may serve as hosts for the Chlamydia-like bacterium Waddlia chondrophila isolated from an aborted bovine foetus. Acta Protozool 43:37–42Google Scholar
  41. Michel R, Müller K-D, Zöller L, Walochnik J, Hartmann M, Schmid EN (2005) Free-living amoebae serve as a host for the Chlamydia-like bacterium Simkania negevensis. Acta Protozool 44:113–121Google Scholar
  42. Michel R, Müller K-D, Hauröder B, Zöller L (2006) Isolation of Saccamoeba limax simultaneously harboring both a Chlamydia-like endoparasite and a rod-shaped bacterium as endosymbionts. Endocytobiosis Cell Res 17:171–179Google Scholar
  43. Michel R, Hauröder B, Müller K-D (2010) Saccamoeba limax (Hartmannellidae) isolated from Elodea sp. was colonized by two strains of endocytic bacteria and a bacteriophage. Endocytobiosis Cell Res 20:38–44Google Scholar
  44. Page FC (1988) A new key to freshwater and soil gymnamoebae. Freshwater Biological Association, AmblesideGoogle Scholar
  45. Poppert S, Essig A, Marre R, Wagner M, Horn M (2002) Detection and differentiation of Chlamydiae by fluorescence in situ hybridization. Appl Environ Microbiol 68:4081–4089PubMedCrossRefGoogle Scholar
  46. Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, Colombet J, Sime-Ngando T, Debroas D (2012) Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS One 7:e33641PubMedCrossRefGoogle Scholar
  47. Schmid EN, Müller K-D, Michel R (2001) Evidence for bacteriophages within Neochlamydia hartmannellae, an obligate endoparasitic bacterium of the free-living amoeba Hartmannella vermiformis. Endocytobiosis Cell Res 14:115–119Google Scholar
  48. Schmidt-Posthaus H, Polkinghorne A, Nufer L, Schifferli A, Zimmermann DR, Segner H, Steiner P, Vaughan L (2012) A natural freshwater origin for two chlamydial species, Candidatus Piscichlamydia salmonis and Candidatus Clavochlamydia salmonicola, causing mixed infections in wild brown trout (Salmo trutta). Environ Microbiol. doi: 10.1111/j.1462-2920.2011.02670.x
  49. Schmitz-Esser S, Toenshoff ER, Haider S, Heinz E, Hoenninger VM, Wagner M, Horn M (2008) Diversity of bacterial endosymbionts of environmental Acanthamoeba isolates. Appl Environ Microbiol 74:5822–5831PubMedCrossRefGoogle Scholar
  50. Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162:545–570PubMedCrossRefGoogle Scholar
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  52. Thao ML, Baumann L, Hess JM, Falk BW, Ng JCK, Gullan PJ, Baumann P (2003) Phylogenetic evidence for two new insect-associated chlamydia of the family Simkaniaceae. Curr Microbiol 47:46–50PubMedCrossRefGoogle Scholar
  53. Török JK, Pollák B, Heéger Z, Csikós G, Márialigeti K (2008) First evidence of bacterial endocytobionts in the lobose testate amoeba Arcella (Amoebozoa, Arcellinida). Protistology 5:303–312Google Scholar
  54. Vannini C, Rosati G, Verni F, Petroni G (2004) Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of “Candidatus Devosia euplotis. Int J Syst Evol Microbiol 54:1151–1156PubMedCrossRefGoogle Scholar
  55. Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniele Corsaro
    • 1
    • 2
  • Karl-Dieter Müller
    • 3
  • Jost Wingender
    • 4
  • Rolf Michel
    • 5
  1. 1.Chlamydia Research Association (CHLAREAS)Vandoeuvre-lès-NancyFrance
  2. 2.Laboratory of Soil Biology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  3. 3.Institut für Medizinische Mikrobiologie der Universität Duisburg-EssenEssenGermany
  4. 4.Biofilm Centre, Aquatic MicrobiologyUniversity of Duisburg-EssenEssenGermany
  5. 5.Central Institute of the Federal Armed Forces Medical ServicesKoblenzGermany

Personalised recommendations