Parasitology Research

, Volume 112, Issue 2, pp 679–692

Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae)

Original Paper


Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the adulticidal, repellent, and ovicidal potential of the crude hexane, ethyl acetate, benzene, aqueous, and methanol solvent extracts from the medicinal plants Andrographis paniculata, Cassia occidentalis, and Euphorbia hirta against the medically important mosquito vector, Anopheles stephensi (Diptera: Culicidae).The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract of A. paniculata followed by C. occidentalis and E. hirta against the adults of A. stephensi with LC50 and LC90 values of 210.30, 225.91, and 263.91 ppm and 527.31, 586.36, and 621.91 ppm, respectively. The results of the repellent activity of hexane, ethyl acetate, benzene, aqueous, and methanol extract of A. paniculata, C. occidentalis, and E. hirta plants at three different concentrations of 1.0, 3.0, and 6.0 mg/cm2 were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, these three plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100 % with methanol extract of A. paniculata exerted at 150 ppm and aqueous, methanol extract of C. occidentalis and E. hirta were exerted at 300 ppm. These results suggest that the leaf extracts of A. paniculata, C. occidentalis, and E. hirta have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi. Further detailed research is needed to identify the active ingredient in the extracts and implement the effective mosquito management program.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DRDO–BU Center for Life SciencesBharathiar UniversityCoimbatoreIndia
  2. 2.Division of Entomology, Department of Zoology, School of Life SciencesBharathiar UniversityCoimbatoreIndia

Personalised recommendations