Parasitology Research

, Volume 112, Issue 2, pp 473–478 | Cite as

In vitro influence of temperature on the biological control activity of the fungus Duddingtonia flagrans against Haemonchus contortus in sheep

  • Rodrigo Buske
  • Janio Morais Santurio
  • Clarissa Vasconcelos de Oliveira
  • Liziane Aita Bianchini
  • José Henrique Souza da Silva
  • Mario Luiz de la RueEmail author
Original Paper


Recently, research for alternative methods to combat gastrointestinal parasites has increased, and the biological control activity of the fungus Duddingtonia flagrans stands out. In this study, the possible influence of temperature on the nematophagous activity of D. flagrans, after gastrointestinal passage, against Haemonchus contortus in sheep was analysed. Four female sheep, between 2 and 3 years of age and weighing between 40 and 50 kg, were used. Two sheep were parasitised with H. contortus, while two other sheep were dewormed. Before the collection of faeces, one of the dewormed animals received a dosage of 1 × 106 chlamydospores of D. flagrans, lyophilised in gelatin capsules, for three consecutive days. The faeces were collected with collector bags, mixed, and then separated as samples with (fungus; 800 eggs per gram (EPG) of faeces) or without fungus (control; 900 EPG). Each sample (five replicates) was maintained in a biochemical oxygen demand incubator under different temperatures (5, 10, 15, 20, 25, 30, or 35 °C) for 21 days, followed by determination of the larval recovery. Compared to the control group, the best temperature for fungal action was 30 °C, while no larvae were recovered at 5 °C. At 10 °C, fungal action was detected, yet there was no significant difference in the percent larval reduction between all temperatures, demonstrating that larval presence seems to be the main factor affecting the nematophagous action of D. flagrans. Temperature does not appear to be a limiting factor in the biological control activity of D. flagrans against H. contortus, but larval presence, which was not observed at 5 °C, is mandatory. At low temperatures, which are typically suboptimal conditions for fungal and larval development, the lyophilised D. flagrans reduced the number of H. contortus larvae, which demonstrates the biological control potential and the potential use of D. flagrans in the subtropics.


Biological Control Biochemical Oxygen Demand Ivermectin Gelatin Capsule Moxidectin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almeida GL, Santurio JM, Jardim Filho JO, Zanette RA, Camillo G, Flores AG, Silva JHS, de la Rue ML (2012) Predatory activity of the fungus Duddingtonia flagrans in equine strongyle infective larvae on natural pasture in the Southern Region of Brazil. Parasit Res 110:657–662CrossRefGoogle Scholar
  2. Chandrawathani P, Jamnah O, Waller PJ, Larsen M, Gillespie AT, Zahari WM (2003) Biological control of nematodes parasites of small ruminants in Malaysia using thenematophagous fungus Duddingtonia flagrans. Vet Parasit 117:173–183CrossRefGoogle Scholar
  3. Eysker M, Bakker N, Kooyman FNJ, van der Linden D, Schrama C, Ploeger HW (2005) Consequences of the unusually warm and dry summer of 2003 in the Netherlands: poor development of free living stages, normal survival of infective larvae and long survival of adult gastrointestinal nematodes of sheep. Vet Parasit 133:313–321CrossRefGoogle Scholar
  4. Faedo M, Barnes EH, Dobson RJ, Waller PJ (1998) The potential of nematophagousfungi to control the free-living stages of nematode parasites of sheep: pasture plot study with Duddingtonia flagrans. Vet Parasit 76:129–135CrossRefGoogle Scholar
  5. Faedo M, Larsen M, Dimander SO, Yeates GW, Höglund J, Waller PJ (2002) Growth of the fungus Duddingtonia flagrans in soil surrounding feces deposited by cattle or sheep fed the fungus to control nematode parasites. Biol Control 23:64–70CrossRefGoogle Scholar
  6. FAO (2003) Resistencia a los Antiparasitarios: estado actual con énfasis en América Latina, Salud Animal. FAO, RomaGoogle Scholar
  7. Fernandez AS, Larsen M, Waller PJ (1997) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: comparison between Australian isolates of Arthrobotrys spp. and Duddingtonia flagrans. Vet Parasit 72:149–155CrossRefGoogle Scholar
  8. Fernández AS, Larsen M, Nansen P, Grønvold J, Henriksen SA, Bjørn H, Wolstrup J (1999) The efficacy of two isolates of the nematode-trapping fungus Duddingtonia flagrans against Dictyocaulus viviparus larvae in faeces. Vet Parasitol 85:289–304PubMedCrossRefGoogle Scholar
  9. Fernandez AS, Larsen M, Wolstrup J, Grønvold J, Nansen P, Bjørn H (1999) Growth rate and trapping eficacy of nematode-trapping fungi under constant and fluctuating temperatures. Parasitol Res 85:661–668PubMedCrossRefGoogle Scholar
  10. Gordon HM, Whitlock HV (1939) A new technique for counting nematode eggs in sheep faeces. J Council Sci Ind Res 12:50–52Google Scholar
  11. Grønvold J, Nansen P, Henriksen SA, Larsen M, Wolstrup J, Bresciani J, Rawat H, Fribert L (1996) Induction of traps by Ostertagia ostertagi larvae, chlamydospore production and growth rate in the nematode-trapping fungus Duddingtonia flagrans. J Helminth 70:291–297PubMedCrossRefGoogle Scholar
  12. Grønvold J, Wolstrup J, Nansen P, Larsen M, Henriksen SA, Bjørn H, Kirchheiner K, Lassen K, Rawat H, Kristiansen HL (1999) Biotic and abiotic factors influencing growth rate and production of traps by the nematode-trapping fungus Duddingtonia flagrans when induced by Cooperia oncophora larvae. J Helminth 73:129–136Google Scholar
  13. Jobim MB, Santurio JM, de la Rue ML (2008) Duddingtonia flagrans: controle biológico de nematodeos de bovinos a campo. Ciência Rural 38:2256–2263CrossRefGoogle Scholar
  14. Kahn LP, Norman TM, Walkden-Brown SW, Crampton A, O’Connor LJ (2007) Trapping efficacy of Duddingtonia flagrans against Haemonchus contortus at temperatures existing at lambing in Australia. Vet Parasit 146:83–89CrossRefGoogle Scholar
  15. Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20:477–481PubMedCrossRefGoogle Scholar
  16. Larsen M (1999) Biological control of helminths. Int J Parasit 29:139–146CrossRefGoogle Scholar
  17. Larsen M (2002) Biological control in a global perspective—a review with emphasis on Duddingtonia flagrans In: Biological control of nematode parasites of small ruminants in Asia. Final Proceedings of FAO Technical Co-operation Project in Malaysia TCP/MAL/0065(T): 19–37Google Scholar
  18. Larsen M, Wolstrup J, Henriksen SA, Dackman C, Grønvold J, Nansen P (1991) In vitro stress selection of nematophagous fungi for biocontrol of parasitic nematodes in ruminants. J Helminth 65:193–200PubMedCrossRefGoogle Scholar
  19. Larsen M, Wolstrup J, Henriksen SA, Gronvold J, Nansen P (1992) In vivo passage through calves of nematophagous fungi selected for biocontrol of parasitic nematodes. J Helminth 66:137–141PubMedCrossRefGoogle Scholar
  20. Larsen M, Faedo M, Waller PJ (1994) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: survey for the presence of fungi in fresh faeces of grazing livestock in Australia. Vet Parasit 53:275–281CrossRefGoogle Scholar
  21. Larsen M, Nansen P, Grondahl C, Thamsborg SM, Grønvold J, Wolstrup J, Henriksen SA, Monrad J (1996) The capacity of the fungus Duddingtonia flagrans to prevent strongyle infections in foals on pasture fed to animals under natural grazing conditions. Parasit 113:1–6CrossRefGoogle Scholar
  22. Lima WS (1989) Dinâmica das populações de nematódeos parasitos gastrintestinais em bovinos de corte, alguns aspectos da relação parasito-hospedeiro e do comportamento dos estádios de vida livre na região do vale do Rio Doce, MG, Brasil. PhD Thesis. Federal University of Minas Gerais, Belo Horizonte. 178pGoogle Scholar
  23. Macrae JC (1993) Metabolic consequences of intestinal parasitism. Proc Nut Soc 52:121–130CrossRefGoogle Scholar
  24. Mendoza-de-Gives P, Crespo JF, Rodriguez DH, Prats VV, Hernandez EL, Fernandez GE (1998) Biological control of Haemonchus contortus infective larvae in ovine faeces by administering an oral suspension of Duddingtonia flagrans chlamydospores to sheep. J Helminth 72:343–347PubMedCrossRefGoogle Scholar
  25. Mota MA, Campos AK, Araújo JV (2003) Controle biológico de helmintos parasitos de animais: estágio atual e perspectivas futuras. Pesq Vet Bras 23:93–100CrossRefGoogle Scholar
  26. Nansen P, Larsen M, Roepstorff A, Grønvold J, Wolstrup J, Henriksen SA (1996) Control of Oesophagostomum dentatum and Hyostrongylus rubidus in outdoor-reared pigs by daily feeding with the microfungus Duddingtonia flagrans. Parasit Res 82:580–584CrossRefGoogle Scholar
  27. Ojeda-Robertos NF, Torres-Acosta JFJ, Ayala-Burgos A, Aguilar-Caballero AJ, Cob-Galera LA, Mendoza-de-Gives P (2008) A technique for the quantification of Duddingtonia flagrans chlamydospores in sheep faeces. Vet Parasit 152:339–343CrossRefGoogle Scholar
  28. Onyiah LC, Arslan O (2005) Simulating the development period of a parasite of sheep on pasture under varying temperature conditions. J Thermal Biol 30:203–211CrossRefGoogle Scholar
  29. Padilha T (1996) Resíduos de anti-helmínticos na carne e leite. In: Padilha T (ed) Controle dos nematódeos gastrintestinais em ruminantes. CNPGL-Embrapa, Coronel Pacheco, pp 77–93Google Scholar
  30. Paraud C, Pors I, Chicard C, Chartier C (2006) Comparative efficacy of the nematodetrapping fungus Duddingtonia flagrans against Haemonchus contortus, Teladorsagia circumcincta and Trichostrongylus colubriformis in goat faeces: influence of the duration and of the temperature of coproculture. Parasit Res 98:207–213CrossRefGoogle Scholar
  31. Paraud C, Pors I, Chartier C (2007) Efficiency of feeding Duddingtonia flagrans chlamydospores to control nematode parasites of first-season grazing goats in France. Vet Res Com 31:305–315CrossRefGoogle Scholar
  32. Peña MT, Miller JE, Fontenot ME, Gillespie A, Larsen M (2002) Evaluation of Duddingtonia flagrans in reducing infective larvae of Haemonchus contortus in faeces of sheep. Vet Parasit 103:259–265CrossRefGoogle Scholar
  33. Roberts FHS, O’Sullivan JP (1950) Methods for egg counts and larval cultures for strongyles infesting the gastrointestinal tract of cattle. Aust Agric Res 1:99–102CrossRefGoogle Scholar
  34. Santiago MA, Benevenga SF, Costa UC (1976) Epidemiologia e controle da helmintose ovina no município de Itaqui-RS. Pesq Agrop Bras 11:1–7Google Scholar
  35. Santos CP, Padilha T, Rodrigues MLA (2001) Atividade predatória de Arthrobotrys oligospora e Duddingtonia flagrans nos estádios larvares pré-parasitários de Cyathostominae sob diferentes temperaturas constantes. Ciência Rural 31:839–842CrossRefGoogle Scholar
  36. Santurio JM, Zanette RA, Da Silva AS, de la Rue ML, Monteiro SG, Alves SH (2009) Improved method for Duddingtonia flagrans chlamydospores production for livestock use. Vet Parasit 164:344–346CrossRefGoogle Scholar
  37. Silva AS, Zanette RA, Gressler LT, Dalla Rosa L, Santurio JM, Monteiro SG (2009) Técnicas parasitológicas adaptadas para quantificação de clamidósporos do fungo Duddingtonia flagrans em fezes ovinas e na pastagem. Vet Zootec 16:373–378Google Scholar
  38. Strong L, Wall R, Woolford A, Djeddour D (1996) The effect of faecally excreted ivermectin and febendazole on the insect colonization of cattle dung following the oral administration of sustained release boluses. Vet Parasit 62:253–266CrossRefGoogle Scholar
  39. Terril TH, Larsen M, Samples O, Husted S, Miller JE, Kaplan RM, Gelaye S (2004) Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies. Vet Parasit 120:285–296CrossRefGoogle Scholar
  40. Wolstrup J, Grønvold J, Henriksen SA, Nansen P, Larsen M, Bøgh HO, Ilsøe B (1994) An attempt to implement the nematode-trapping fungus Duddingtonia flagrans in biological control of trichostrongyle infections of first year grazing calves. J Helminth 68:175–180PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rodrigo Buske
    • 1
  • Janio Morais Santurio
    • 2
  • Clarissa Vasconcelos de Oliveira
    • 1
  • Liziane Aita Bianchini
    • 1
  • José Henrique Souza da Silva
    • 3
  • Mario Luiz de la Rue
    • 1
    Email author
  1. 1.Human Parasitology Laboratory, Microbiology and Parasitology DepartmentFederal University of Santa MariaSanta MariaBrazil
  2. 2.Mycology Research Laboratory (LAPEMI), Microbiology and Parasitology DepartmentFederal University of Santa MariaSanta MariaBrazil
  3. 3.Zootechny DepartmentFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations