Advertisement

Parasitology Research

, Volume 112, Issue 1, pp 303–311 | Cite as

Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae)

  • Chandran Sundaravadivelan
  • Madanagopal Nalini Padmanabhan
  • Prabhu Sivaprasath
  • Lingan Kishmu
Original Paper

Abstract

Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. Aqueous leaf extract and green synthesized silver nanoparticles (Ag NPs) from Pedilanthus tithymaloides (L.) Poit. were investigated for their efficacy against the dengue vector Aedes aegypti L. (Diptera; Culicidae). The biologically synthesized Ag NPs were characterized by UV–vis spectrum, X-ray diffraction, Fourier transform infrared, and surface characteristics by atomic force microscopy. Further, on exposure of the larvae to varying concentrations of aqueous leaf and Ag NPs for 24 h, these Ag NPs showed 100 % mortality from first to fourth instars and pupae of A. aegypti at 0.25 %, which is the highest concentration, tested, wherein it was the lowest concentration of aqueous leaf extract alone which showed only 10–18 % of mortality. Lethal concentration (LC50) values of Ag NPs against the larval and pupal stages were 0.029, 0.027, 0.047, 0.086, and 0.018 % with no mortality in control. These results suggest that the use of P. tithymaloides silver nanoparticles can be a rapid, environmentally safer bio-pesticide which can form a novel approach to develop effective biocides for controlling the target vector.

Keywords

Silver Nanoparticles Leaf Extract West Nile Virus Azadirachtin Dengue Hemorrhagic Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aarthi N, Vasuki C, Panneerselvam C, Prasanakumar K, Madhiyazhagan P, Murugan K (2011) Toxicity and smoke repellency effect of Mimosa pudica L. against the malarial vector Anopheles stephensi (Diptera: Culicidae). The Bioscan 6(2):211–214Google Scholar
  2. Abdul Rahuman A, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Larvicidal activity of some Euphorbiaceae plant extract against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873PubMedCrossRefGoogle Scholar
  3. Abdul Rahuman A, Venkatesan P, Geetha K, Gopalakrishnan G, Bagavan A, Kamaraj C (2008b) Mosquito larvicidal activity of gluanol acetate, a tetracyclic triterpenes derived from Ficus racemosa Linn. Parasitol Res 103:333–339PubMedCrossRefGoogle Scholar
  4. Abreu P, Matthew S, Gonzaler T, Costa D, Segundo MA, Fernandes E (2006) Anti-inflammatory and antioxidant activity of a medicinal tincture from Pedilanthus tithymaloides. Life Sci 78:1578–1585PubMedCrossRefGoogle Scholar
  5. Agalya Priyadarshini S, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-012-2924-8
  6. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B: Biointerfaces 81:81–86CrossRefGoogle Scholar
  7. Ahmed A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28:313–318CrossRefGoogle Scholar
  8. Amer A, Mehlhorn H (2006a) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477PubMedCrossRefGoogle Scholar
  9. Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera; Culicidae). Parasitol Res 99:466–472PubMedCrossRefGoogle Scholar
  10. Anonymous (1996) The Indian Pharmacopoeia, 2nd edn. Government of India Publication, New DelhiGoogle Scholar
  11. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids and Surfaces B: Biointerfaces 71:113–118CrossRefGoogle Scholar
  12. Bigi MF, Torkomian VL, de Groote ST, Hebling MJ, Bueno OC, Pagnocea FC, Femandes JB, Vieira PC, da Silve MF (2004) Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Manag Sci 60(9):933–938PubMedCrossRefGoogle Scholar
  13. Boyer S, Paris M, Jego S, Lympérière G, Ravanel P (2012) Influence of insecticide Bacillus thuringiensis subsp. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biol Control 62:75–81CrossRefGoogle Scholar
  14. Chaubal R, Pawar PV, Hebbalkar GD, Tungikar VB, Puranik VG, Deshpande VH, Deshpande NR (2005) Larvicidal activity of Acacia nilotica extracts and isolation of D-pinitol a bioactive carbohydrate. Chem Biodivers 2:684–688PubMedCrossRefGoogle Scholar
  15. Dhar SN, Ray SM, Roy A, Dutta SK (1988) Oral anti-inflammatory activity of pedilanthain—a new proteolytic enzyme from Pedilanthus tithymaloides. Indian J Pharm Sci 50:281–283Google Scholar
  16. Gianotti RL, Bomblies A, Dafalla M, Issa-Arzika I, Duchemin JB, Eltahir EAB (2008) Efficacy of local neem extracts for sustainable malaria vector in an African village. Malar J 7:138PubMedCrossRefGoogle Scholar
  17. Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extracts and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures 4(3):557–563Google Scholar
  18. Kamaraj C, Rahuman AA, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 03:325–331CrossRefGoogle Scholar
  19. Khanna S, Srivastava CN, Srivastava MM, Srivastava S (2003) Insecticidal activity of the plant Phyllanthus amarus against Tribolium castaneum. J Environ Biol 24(4):391–394PubMedGoogle Scholar
  20. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Anti-fungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22(2):235–242PubMedCrossRefGoogle Scholar
  21. Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011) larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 109:1251–1257PubMedCrossRefGoogle Scholar
  22. Lee SE (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. J Am Mosq Control Assoc 16:245–247PubMedGoogle Scholar
  23. Lok CM, Ho CM, Chen R, He QY, Yu WY (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924PubMedCrossRefGoogle Scholar
  24. Luize PS, Veda-Nakamura T, Zimmermann A, Vidoti GJ, Dias Filho BP, Morgado-Diaz JA, Nakamura CV (2003) Ultrastructural alterations induced by AZ-7, a compound from Pedilanthus tithymaloides, on amastigote forms of Trypanosoma cruzi. Acta Microsc 12:319–320Google Scholar
  25. Manonmani A, Balaraman K (2001) A highly mosquitocidal Bacillus thuringiensis var. thompsoni. Curr Sci 80(6):779–781Google Scholar
  26. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Vishnukirthi A, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. doi: 10.1007/s00436-010-2212-4
  27. Medlock JM, Snow KR, Leach S (2006) Possible ecology and epidemiology of medically important mosquito-borne arboviruses in Great Britain. Epidemiol Infect 135:466–482PubMedCrossRefGoogle Scholar
  28. Mohan L, Sharma P, Srivastava CN (2007) Comparative efficacy of Solanum xanthocarpum extracts alone and in combination with a synthetic pyrethroid, cypermethrin, against malaria vector, Anopheles stephensi. Southeast Asian J Trop Med Public Health 38:256–260PubMedGoogle Scholar
  29. Mohana K (2010) Comparative efficacy of Bacillus thuringiensis israelensis crystal proteins in free and montmorillonite bound state as a larvicide in the ovitraps for Culex quinquefasciatus Say. J of Biopest 3(1):408–412Google Scholar
  30. Mongkolvisut W, Sutthivaiyakit S (2007) Anti-malarial and antituberculous poly-O-acylated jatrophane diterpenoids from Pedilanthus tithymaloides. J Nat Prod 70(9):1434–1438PubMedCrossRefGoogle Scholar
  31. Nadworny PL, Wang J, Tredget EE, Burrell RE (2008) Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 4(3):241–251PubMedCrossRefGoogle Scholar
  32. Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthus (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filarial vector (Culex quinquefasciatus Say). Parasitol Res 102:171–174PubMedCrossRefGoogle Scholar
  33. Paris M, David JP, Despres L (2011) Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicol 20:1184–1194Google Scholar
  34. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn.G. Don and their antiplasmodial activities. Asian Pacific J Trop Biomed 2:574–580CrossRefGoogle Scholar
  35. Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103:133–139PubMedCrossRefGoogle Scholar
  36. Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera; Culicidae). Parasitol Res 104:637–643PubMedCrossRefGoogle Scholar
  37. Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104:337–340PubMedCrossRefGoogle Scholar
  38. Rajkumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica 118:196–203CrossRefGoogle Scholar
  39. Rao MS, Tewari RP, Parvatha Reddy P, Pandey M (1991) Comparative efficacy of Glyricidia maculate, Pedilanthus tithymaloides and carbofuran in the management of nematode, Aphelenchoides sacchari. In: Proceedings of the National Symposium on Mushrooms, Trivandrum, KAU, pp 245–247Google Scholar
  40. Raut RW, Kolekar Niranjan S, Lakkakula Jaya R, Mendhulkar Vijay D, Kashid Sahebrao B (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L.) pierre. Nano-Micro Lett 2:106–113CrossRefGoogle Scholar
  41. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticles inhibition of monkeypox virus plague formation. Nanoscale Res Lett 3:129–133CrossRefGoogle Scholar
  42. Rongsriyam Y, Trongtokit Y, Komalamisra N, Sinchaipanich N, Apiwathnasorn C, Mitrejet A (2006) Formulation of tablets from the crude extract of Rhinacanthus nasutus (Thai local plant) against Aedes aegypti and Culex quinquefasciatus larvae: a preliminary study. Southeast Asian J Trop Med Public Health 7:265–271Google Scholar
  43. Roy N, Barik A (2010) Green synthesis of silver nanoparticles from the unexploited weed resources. International Journal of Nanotechnology and Applications 4(2):95–101Google Scholar
  44. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. doi: 10:1007/s00436-010-2115-4
  45. Sathishkumar M, Sneha K, Won SW, Cho CWS, Kim Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B: Biointerfaces 73:332–338CrossRefGoogle Scholar
  46. Seshagirirao K (1995) Purification and partial characterization of a lectin from Pedilanthus tithymaloides latex. Biochem Arch 11:197–201Google Scholar
  47. Shaalan EAS, Canyonb D, Younese MWF, Abdul-Wahaba H, Mansoura AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166PubMedCrossRefGoogle Scholar
  48. Soni N, Prakash S (2011) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res. doi: 10.1007/s00436-011-2467-4
  49. SPSS (2007) SPSS for Windows. Version 13.0. SPSS, ChicagoGoogle Scholar
  50. Su T, Mulla MS (1998) Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera; Culicidae). J Amer Mosq Cont Asso 14:204–209Google Scholar
  51. Sundaravadivelan C, Chandrasekar S, Sevarkodiyone SP, Kumar P, Kuberan T, Anburaj J, Vasanthakumar T (2011) Inter-generic bio-variability and relative abundance of adult female biting mosquitoes in wet and dry land areas of selected villages in a semiarid zone. International Journal of Environmental Sciences 2(1):337–351Google Scholar
  52. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262CrossRefGoogle Scholar
  53. Udayasoorian C, Vinothkumar K, Jayabalakrishnan RM (2011) Extracellular synthesis of silver nanoparticles using leaf extracts of Cassia auriculata. Digest Journal of Nanomaterials and Biostructures 6(1):279–283Google Scholar
  54. Vidotti GJ, Zimmermann A, Sarragiotto MH, Nakamura CV, Filho BPD (2006) Antimicrobial and phytochemical studies on Pedilanthus tithymaloides. Fitoterapia 77:43–46PubMedCrossRefGoogle Scholar
  55. Wiesman Z, Chapagain BP (2006) Larvicidal activities of saponin containing extracts and fractions of fruit mesocarp of Balanites aegyptiaca. Fitoterapia 77:420–424PubMedCrossRefGoogle Scholar
  56. Willems, van den Wildenberg (2005) Roadmap report on nanoparticles. W&W Espana s.l., BarcelonaGoogle Scholar
  57. World Health Organization (1984) Lymphatic filariasis. Technical report series, 702. WHO, GenevaGoogle Scholar
  58. World Health Organization (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/96.l. WHO, Geneva, p 69Google Scholar
  59. World Health Organization (2010) Dengue transmission research in WHO bulletin. WHO, GenevaGoogle Scholar
  60. Yamar BA, Diallo D, Kebe CM, Dia I, Diallo M (2005) Aspects of bioecology of two Rift valley fever virus vectors in Senegal (West Africa) Aedes vexanus and Culex poicilipes (Diptera; Culicidae). J Med Entomol 42(5):739–750PubMedCrossRefGoogle Scholar
  61. Zebit CPW (1984) Effect of some crude and Azadirachta-enriched neem (Azadirachta indica) seed kernel extracts of larvae of Aedes aegypti. Entomol Exp Appl 35:11–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chandran Sundaravadivelan
    • 1
  • Madanagopal Nalini Padmanabhan
    • 1
    • 2
  • Prabhu Sivaprasath
    • 2
  • Lingan Kishmu
    • 2
  1. 1.Department of ZoologyKarpagam UniversityCoimbatoreIndia
  2. 2.Department of Biotechnology, School of Life SciencesKarpagam UniversityCoimbatoreIndia

Personalised recommendations