Advertisement

Parasitology Research

, Volume 112, Issue 1, pp 107–111 | Cite as

Absence of Borrelia spp., Candidatus Neoehrlichia mikurensis, and Anaplasma phagocytophilum in questing adult Dermacentor reticulatus ticks

  • Dania RichterEmail author
  • Christina Kohn
  • Franz-Rainer Matuschka
Original Paper

Abstract

To determine whether Dermacentor reticulatus ticks are infected by Borrelia spp., Candidatus Neoehrlichia mikurensis, or Anaplasma phagocytophilum, we collected questing adults in the outskirts of Berlin, Germany, examined them for the presence of DNA of these pathogens, and compared the infection rates to those of sympatric Ixodes ricinus ticks. Questing D. reticulatus adults appeared not to harbor the bacterial pathogens that are prevalent in I. ricinus ticks. Based on our sample size, the estimated prevalence of each of these pathogens in D. reticulatus ticks would be well below three tenth of a percent (<0.3 %). For pathogens which so rarely infect D. reticulatus ticks, this tick likely plays no epidemiologic vector role for either their enzootic transmission cycle in nature or their transmission to people.

Keywords

Anaplasma Phagocytophilum Ricinus Tick Outer Surface Protein Dermacentor Reticulatus Candidatus Neoehrlichia Mikurensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Udo Bischoff, Nicole Held, Mandy Marbler-Pötter, and Tanja Meier-Schünemann for expert technical assistance.

Disclosure statement

No competing financial interests exist.

References

  1. Alekseev AN, Dubinina HV, van de Pol I, Schouls LM (2001) Identification of Ehrlichia spp. and Borrelia burgdorferi in Ixodes ticks in the Baltic regions of Russia. J Clin Microbiol 39:2237–2242PubMedCrossRefGoogle Scholar
  2. Barandika JF, Hurtado A, Garcia-Sanmartin J, Juste RA et al (2008) Prevalence of tick-borne zoonotic bacteria in questing adult ticks from northern Spain. Vector-borne Zoonotic Dis 8:829–835PubMedCrossRefGoogle Scholar
  3. Gil H, Escudero R, Garcia-Perez AL, Anda P (2005) Identification of a new Borrelia species among small mammals in areas of northern Spain where Lyme disease is endemic. Appl Environ Microbiol 71:1336–1345PubMedCrossRefGoogle Scholar
  4. Hubalek Z, Halouzka J, Juricova Z (1998) Investigation of haematophagous arthropods for borreliae—summarized data, 1988–1996. Folia Parasitol 45:67–72PubMedGoogle Scholar
  5. Jahfari S, Fonville M, Hengeveld P, Reusken C et al (2012) Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasites Vectors 5:74. doi: 10.1186/1756-3305-5-74 PubMedCrossRefGoogle Scholar
  6. Kahl O, Janetzki C, Gray JS, Stein J et al (1992) Tick infection rates with Borrelia: Ixodes ricinus versus Haemaphysalis concinna and Dermacentor reticulatus in two locations in eastern Germany. Med Vet Entomol 6:363–366PubMedCrossRefGoogle Scholar
  7. Kawahara M, Rikihisa Y, Lin Q, Isogai E et al (2006) Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl Environ Microbiol 72:1102–1109PubMedCrossRefGoogle Scholar
  8. Kiffner C, Vor T, Hagedorn P, Niedrig M et al (2011) Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Parasitol Res 108:323–335PubMedCrossRefGoogle Scholar
  9. Mather TN, Mather ME (1990) Intrinsic competence of three ixodid ticks (Acari) as vectors of the Lyme disease spirochete. J Med Entomol 27:646–650PubMedGoogle Scholar
  10. Matlova L, Halouzka J, Jurikoca Z, Hubalek Z (1996) Comparative experimental infection of Ixodes ricinus and Dermacentor reticulatus (Acari: Ixodidae) with Borrelia burgdorferi sensu lato. Folia Parasitol 43:159–160Google Scholar
  11. Matuschka F-R, Spielman A (1986) The emergence of Lyme disease in a changing environment in North America and Central Europe. Exp Appl Acarol 2:337–353PubMedCrossRefGoogle Scholar
  12. Matuschka F-R, Fischer P, Heiler M, Richter D et al (1992) Capacity of European animals as reservoir hosts for the Lyme disease spirochete. J Infect Dis 165:479–483PubMedCrossRefGoogle Scholar
  13. Nijhof AM, Bodaan C, Postigo M, Nieuwenhuijs H et al (2007) Ticks and associated pathogens collected from domestic animals in the Netherlands. Vector-borne Zoonotic Dis 7:585–595PubMedCrossRefGoogle Scholar
  14. Pal U, Li X, Wang T, Montgomery RR et al (2004a) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468PubMedCrossRefGoogle Scholar
  15. Pal U, Yang X, Chen M, Bockenstedt LK et al (2004b) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220–230PubMedGoogle Scholar
  16. Paziewska A, Zwolinska L, Harris PD, Bajer A et al (2010) Utilisation of rodent species by larvae and nymphs of hard ticks (Ixodidae) in two habitats in NE Poland. Exp Appl Acarol 50:79–91PubMedCrossRefGoogle Scholar
  17. Piesman J, Sinsky RJ (1988) Ability of Ixodes scapularis, Dermacentor variabilis and Amblyomma americanum (Acari: Ixodidae) to acquire, maintain, and transmit Lyme disease spirochetes (Borrelia burgdorferi). J Med Entomol 25:336–339PubMedGoogle Scholar
  18. Richter D, Matuschka F-R (2006) Perpetuation of the Lyme disease spirochete Borrelia lusitaniae by lizards. Appl Environ Microbiol 72:4627–4632PubMedCrossRefGoogle Scholar
  19. Richter D, Matuschka F-R (2012) “Candidatus Neoehrlichia mikurensis”, Anaplasma phagocytophilum and Lyme disease spirochetes in questing European vector ticks and in feeding ticks removed from people. J Clin Microbiol 50:943–947PubMedCrossRefGoogle Scholar
  20. Richter D, Spielman A, Komar N, Matuschka F-R (2000) Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg Infect Dis 6:133–138PubMedCrossRefGoogle Scholar
  21. Richter D, Schlee D, Matuschka F-R (2003) Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis 9:697–701PubMedCrossRefGoogle Scholar
  22. Richter D, Klug B, Spielman A, Matuschka F-R (2004) Adaptation of diverse Lyme disease spirochetes in a natural rodent reservoir host. Infect Immun 72:2442–2444PubMedCrossRefGoogle Scholar
  23. Richter D, Debski A, Hubalek Z, Matuschka F-R (2012) Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks. Vector-borne Zoonotic Dis 12:21–27PubMedCrossRefGoogle Scholar
  24. Schwan TG, Piesman J (2002) Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis 8:115–121PubMedCrossRefGoogle Scholar
  25. Scoles GA, Papero M, Beati L, Fish D (2001) A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector-borne Zoonotic Dis 1:21–34PubMedCrossRefGoogle Scholar
  26. Shpynov S, Fournier P-E, Rudakov N, Tarasevich et al (2006) Detection of members of the genera Rickettsia, Anaplasma, and Ehrlichia in ticks collected in the Asiatic part of Russia. Ann N Y Acad Sci 1078:378–383PubMedCrossRefGoogle Scholar
  27. Sixl W, Petrovec M, Marth E, Wüst G et al (2003) Investigation of Anaplasma phagocytophila infections in Ixodes ricinus and Dermacentor reticulatus ticks in Austria. Ann N Y Acad Sci 990:94–97PubMedCrossRefGoogle Scholar
  28. Tomanovic S, Chochlakis D, Radulovic Z, Milutinovic M et al (2012) Analysis of pathogen co-occurrence in host-seeking adult hard ticks from Serbia. Exp Appl Acarol. doi: 10.1007/s10493-012-9597-y
  29. Wielinga PR, Gaasenbeek C, Fonville M, de Boer A et al (2006) Longitudinal analysis of tick densities and Borrelia, Anaplasma, and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in The Netherlands. Appl Environ Microbiol 72:7594–7601PubMedCrossRefGoogle Scholar
  30. Zahler W, Gothe R, Rinder H (1995) Genetic evidence against a morphologically suggestive conspecificity of Dermacentor reticulatus and D. marginatus (Acari: Ixodidae). Int J Parasitol 25:1413–1419PubMedCrossRefGoogle Scholar
  31. Zeidner NS, Burkot TR, Massung R, Nicholson WL et al (2000) Transmission of the agent of human granulocytic ehrlichiosis by Ixodes spinipalpis ticks: evidence of an enzootic cycle of dual infection with Borrelia burgdorferi in Northern Colorado. J Infect Dis 182:616–619PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dania Richter
    • 1
    Email author
  • Christina Kohn
    • 1
  • Franz-Rainer Matuschka
    • 1
  1. 1.Abteilung Parasitologie, Institut für PathologieCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations