Parasitology Research

, Volume 112, Issue 1, pp 45–58 | Cite as

Fluazuron-induced morphophysiological changes in the cuticle formation and midgut of Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) nymphs

  • Patrícia Rosa de Oliveira
  • Izabela Braggião Calligaris
  • Gislaine Cristina Roma
  • Gervásio Henrique Bechara
  • Maria Izabel Camargo-MathiasEmail author
Original Paper


The present study demonstrated the effects of the arthropod growth regulator, fluazuron (Acatak®), in the formation of the integument and digestive processes of Rhipicephalus sanguineus nymphs fed on rabbits treated with different doses of this chemical acaricide. For this, three different doses of fluazuron (20, 40, or 80 mg/kg) were applied “pour on” to the hosts (groups II, III, and IV), as well as distilled water to the control group. On the first day after treatment (24 h), the hosts were artificially infested with R. sanguineus nymphs. After full engorgement (7 days), the nymphs were removed, placed on labeled Petri dishes, and kept in biochemical oxygen demand incubator for 7 days. The engorged nymphs were then taken for morphological, histochemical, and histological analyses. The results showed the occurrence of cytological, morphohistological, and histochemical alterations in the integument and midgut of nymphs from all the different treated groups. These alterations occurred at cuticular level in the subdivisions of the cuticle, related to the size of the digestive cells, amount of accumulated blood elements, and digestive residues, as well as the presence of vacuoles in the cytoplasm of the digestive cells. Thus, this study demonstrated that fluazuron acts on the integument and midgut cells of R. sanguineus nymphs fed on treated rabbits and pointed out the possibility of the use of this chemical—which is more specific, less toxic, and less harmful to the environment and nontarget organisms—in the control of R. sanguineus, at least in the nymphal stage of its biological cycle.


Chitin Tick Species Diflubenzuron Digestive Cell Methoprene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank to FAPESP (grant no. 2010/50827-0) for financial support and CNPQ academic career research fellowship to G.H. Bechara and M.I. Camargo-Mathias.

Conflict of interest



  1. Agbede RIS, Kemp DH (1985) Digestion in the cattle-tick Boophilus microplus: light microscope study of the gut cells in nymphs and females. Int J Parasitol 15:147–157PubMedCrossRefGoogle Scholar
  2. Agyei AD, Runham NW (1995) Studies on the morphological changes in the midguts of two ixodid tick species Boophilus microplus and Rhipicephalus appendiculatus during digestion of the blood meal. Int J Parasitol 25:55–62PubMedCrossRefGoogle Scholar
  3. Baker JR (1946) The histochemical recognition of lipine. Q J Microscopic Sci 87:441–470Google Scholar
  4. Balashov YS (1983) The female reproductive system. In: Balashov YS (ed) An atlas of ixodid tick ultrastructure. Entomological Society of America, Russian, pp 98–128Google Scholar
  5. Bechara GH, Szabó MPJ, Ferreira BR, Garcia MV (1995) Rhipicephalus sanguineus tick in Brazil: feeding and reproductive aspects under laboratorial conditions. Braz J Vet Parasitol 4:61–66Google Scholar
  6. Bowman AS, Coons LB, Needham GR, Sauer JR (1997) Tick saliva: recent advances and implications for vector competence. Med Vet Entomol 11:277–285PubMedCrossRefGoogle Scholar
  7. Bull MS, Swindale S, Doverend D, Hess EA (1996) Suppression of Boophilus microplus populations with fluazuron: an acarine growth regulator. Aust Vet J 74:468–470PubMedCrossRefGoogle Scholar
  8. Chapman RF (1982) The insects: structure and function, 4th edn. Harvard University Press, Cambridge, p 919Google Scholar
  9. Chen AC (1987) Chitin metabolism. Arch Insect Biochem Physiol 6:267–277CrossRefGoogle Scholar
  10. Coop RL, Taylor MA, Jacobs DE, Jackson F (2002) Ectoparasites: recent advances in control. Tr Parasitol 18:55–56CrossRefGoogle Scholar
  11. Correia TR (2003) Eficácia do inibidor de crescimento de insetos Pyriproxyfen associado ao Piretróide D-phenotrina no controle de Ctenocephalides felis felis (Bouché, 1835) (Siphonaptera: Pulicidae) em cães, gatos e no ambiente. Tese de mestrado em Medicina Veterinária, Parasitologia Veterinária Seropédica, UFRRJGoogle Scholar
  12. Crampton AL, Baxter GD, Barker SC (1999) Identification and characterization of a cytochrome P450 gene and processed pseudogene from an arachnid: the cattle tick, Boophilus microplus. Insect Biochem Mol Biol 29:377–384PubMedCrossRefGoogle Scholar
  13. Da Glória MA (1988) Estudos preliminares para avaliação do uso de compostos reguladores de crescimento no controle de R. (Boophilus) microplus. Tese de Mestrado em Medicina Veterinária, Parasitologia Veterinária Seropédica, UFRRJGoogle Scholar
  14. Dantas-Torres F (2008) The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): from taxonomy to control. Vet Parasitol 152:173–185PubMedCrossRefGoogle Scholar
  15. Dantas-Torres F (2010) Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Paras Vect 3:26–37CrossRefGoogle Scholar
  16. Dotson EM, Connat JL, Diehl PA (1995) Ecdysteroid titre and metabolism and cuticle deposition during embryogenesis of the ixodid tick Amblyomma hebraeum (Koch). Comp Biochem Physiol 110B:155–166Google Scholar
  17. Fournet F, Sannier C, Moniere M, Porcheron P, Monteny N (1995) Effects of two insect growth regulators on ecdysteroid production in Aedes aegypti (Diptera: Culicidae). J Med Entomol 32(5):588–593PubMedGoogle Scholar
  18. Gangishetti U, Breitenbach S, Zander M, Saheb SK, Müller U, Schwarz H, Moussian B (2009) Effects of benzoylphenylurea on chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur J Cell Biol 88:167–180PubMedCrossRefGoogle Scholar
  19. Glebic I, Olejnicek J, Grubhoffer L (2002) Effects of insect hormones on hemagglutination activity in two members of the Culex pipiens complex. Exp Parasitol 100(1):75–79CrossRefGoogle Scholar
  20. Graf JF (1993) The role of insect growth regulators in arthropod control. Parasitol Today 9(12):471–474PubMedCrossRefGoogle Scholar
  21. Harrison WF, Foelix RF (1999) Microscopic anatomy of invertebrates, v. 8B: Chelicerata: Arthropoda. Wiley, New YorkGoogle Scholar
  22. Hoffmann KH, Lorenz MW (1998) Recent advances in hormones in pest control. Phytoparasitica 26(4):1–8CrossRefGoogle Scholar
  23. Junqueira LCU, Junqueira LMMS (1983) Técnicas básicas de citologia e histologia. Livraria Editora Santos, São Paulo, pp 48–81Google Scholar
  24. Kemp DH, Dunster S, Binnington KC, Bird PE, Nolan J (1990) Mode of action of CGA 157419 on the cattle tick Boophilus microplus. Bull Soc Fr Parasitol 8:1048–1049Google Scholar
  25. Koh K, Moro T, Shiraishi S, Uchida TA (1991) Ultrastructural changes of the midgut epithelial cells in feeding and moulting nymphs of the tick Haemaphysalis longicornis. Int J Parasitol 21:23–36PubMedCrossRefGoogle Scholar
  26. Labruna MB, Pereira MC (2001) Carrapato em Cães no Brasil. Clínica Veterinária, São Paulo, n.30, pp 24–32Google Scholar
  27. Lehane MT (1997) Peritrophic membrane structure and function. Annu Ver Entomol 42:525–550CrossRefGoogle Scholar
  28. Matsuo T, Sato W, Inoue N, Yokoyama N, Taylor D, Fujisaki K (2003) Morphological studies on the extracellular structure of the midgut of a tick Haemaphysalis longicornis (Acari: Ixodidae). Parasitol Res 90:243–248PubMedGoogle Scholar
  29. Mencke N, Volp P, Volfova V, Stanneck D (2003) Repellent efficacy of a combination containing imidacloprid and permethrin against sand flies (Phlebotomus papatasi) on dogs. Parasitol Res 90:108–111CrossRefGoogle Scholar
  30. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412PubMedCrossRefGoogle Scholar
  31. Mikolajczyk P, Oberlander H, Silhacek DL, Ishaaya I, Shaaya E (1994) Chitin synthesis in Spodoptera frugiperda wing imaginal discs. I. Chlorfluazuron, diflubenzuron, and teflubenzuron inhibit incorporation but not uptake of [14C]-N-acetyl-d-glucosamine. Arch Insect Biochem Physiol 25:245–258CrossRefGoogle Scholar
  32. Mommaerts V, Sterk G, Smagghe G (2006) Hazards and uptake of chitin synthesis inhibitors in bumblebees Bombus terrestris. Pest Manage Sci 62:752–758CrossRefGoogle Scholar
  33. Montasser AA, Amin A (2010) Effect of ivermectin on the integument and dorsoventral muscles of the tick Argas (Persicargas) persicus (Oken) (Ixodoidea: Argasidae). Parasitol Res 107:975–982PubMedCrossRefGoogle Scholar
  34. Nishiura JT, Ray K, Murray J (2005) Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. Insect Biochem Mol Biol 35:561–573PubMedCrossRefGoogle Scholar
  35. Oberlander H, Silhacek DL (1998) New perspectives on the mode of action of benzoylphenyl urea insecticides. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin, pp 92–105Google Scholar
  36. Oberlander H, Smagghe G (2001) Imaginal discs and tissue cultures as targets for insecticide action. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer, Berlin, pp 133–150CrossRefGoogle Scholar
  37. Oliveira PR, Bechara GH, Camargo-Mathias MI (2008) Evaluation of cytotoxic effects of fipronil on ovaries of semi-engorged Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) tick female. Food Chem Toxicol 46:2459–2465PubMedCrossRefGoogle Scholar
  38. Oliveira PR, Bechara GH, Camargo-Mathias MI (2009) Action of the chemical agent fipronil on the reproductive process of semi-engorged females of the tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Ultrastructural evaluation of ovary cells. Food Chem Toxicol 47:1255–1264PubMedCrossRefGoogle Scholar
  39. Oliveira PR, Calligaris IB, Roma GC, Bechara GH, Camargo-Mathias MI (2011) Potential of the insect growth regulator, fluazuron, in the control of Rhipicephalus sanguineus nymphs (Latreille, 1806) (Acari: Ixodidae): determination of the LD95 and LD50. Exp Parasitol 131:35–39Google Scholar
  40. Palli SR, Retnakaran A (1999) Molecular and biochemical aspects of chitin synthesis inhibition. In: Jolle’s P, Muzzarelli RAA (eds) Chitin and chitinases. Birkhäuser Verlag, pp 85–98Google Scholar
  41. Paz GF, Labruna MB, Leite RC (2008) Ritmo de queda de Rhipicephalus sanguineus (Acari: Ixodidae) de cães artificialmente infestados. Rev Bras Parasitol Vet 17(3):139–144PubMedGoogle Scholar
  42. Pawar PV, Pisale SP, Sharma RN (1995) Effect of some new insect growth regulators on metamorphosis and reproduction of Aedes aegypti. Indian J Med Res 101:13–18PubMedGoogle Scholar
  43. Pearse AGE (1985) Histochemistry theoretical and applied. Livingstone, Churchill, pp 123–214Google Scholar
  44. Peters W (1992) Zoophysiology. Peritrophic membranes. Springer, BerlinCrossRefGoogle Scholar
  45. Pruett JH (1999) Immunological control of arthropods ectoparasites—a review. Int J Parasitol 29:25–32PubMedCrossRefGoogle Scholar
  46. Roma GC, Nunes PH, Remedio RN, Camargo-Mathias MI (2012) Synganglion histology in different stages of Rhipicephalus sanguineus ticks (Acari: Ixodidae). Parasitol Res. doi: 10.1007/s00436-011-2785-6
  47. Saenz-De-Cabezon FJ, Perez-Moreno I, Zalom FG, Marco V (2006) Effects of lufenuron on Lobesia botrona (Lepidoptera: Tortricidae) egg, larval, and adult stages. J Econ Entomol 99:427–431PubMedCrossRefGoogle Scholar
  48. Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M (1999) A cell surface mucin specifically expressed the midgut of the malaria mosquito Anopheles gambiae. Proc Nat Acad Sci USA 96:5610–5615PubMedCrossRefGoogle Scholar
  49. Soares AO, Souza AD, Feliciano EA, Rodrigues AF, D’agosto M, Daemon E (2006) Evaluation of ectoparasites and hemoparasites in dogs kept in apartments and houses with yards in the city of Juiz de Fora, Minas Gerais, Brazil. Rev Bras Parasitol Vet 15(1):13–16PubMedGoogle Scholar
  50. Sonenshine DE (1991) The female reproductive system. In: Sonenshine DE (ed) Biology of ticks. Oxford University Press, New York, pp 280–304Google Scholar
  51. Splinder KD (1990) Chitin: its synthesis and degradation in arthropods, 1983. In: Splinder KD, Splinder-Barth M, Londershausen M (eds) Chitin metabolism: a target for drugs against parasites. Parasitol Res 76: 283–288Google Scholar
  52. Taylor MA (2001) Recent developments in ectoparasiticides. Vet J 161:253–268PubMedCrossRefGoogle Scholar
  53. Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47(2):47–61PubMedCrossRefGoogle Scholar
  54. Till WM (1961) A contribution to the anatomy and histology of the brown ear tick Rhipicephalus appendiculatus. Mem Entomol Soc Southern Africa 6:1–124Google Scholar
  55. Vasuki V (1999) Influence of IGR treatment on oviposition of three species of vector mosquitos at sublethal concentrations. South Asian J Trop Med Public Health, Bangkok 30(1):200–203Google Scholar
  56. You M, Xuan X, Tsuji N, Kamio T, Taylor D, Suzuki N, Fujisaki K (2003) Identification and molecular characterization of a chitinase from the hard tick Haemaphysalis longicornis. J Biol Chem 278:8556–8563PubMedCrossRefGoogle Scholar
  57. Zhu Z, Gern L, Aeschlimann A (1991) The peritrophic membrane of Ixodes ricinus. Parasitol Res 77:635–641PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Patrícia Rosa de Oliveira
    • 1
  • Izabela Braggião Calligaris
    • 1
  • Gislaine Cristina Roma
    • 1
  • Gervásio Henrique Bechara
    • 2
  • Maria Izabel Camargo-Mathias
    • 1
    Email author
  1. 1.Institute of BiosciencesSao Paulo State University-UNESPRio ClaroBrazil
  2. 2.Faculty of Agronomic and Veterinary SciencesUNESPJaboticabalBrazil

Personalised recommendations