Parasitology Research

, Volume 111, Issue 3, pp 1093–1101

Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to Plasmodium chabaudi malaria

  • Saleh Al-Quraishy
  • Mohamed A. Dkhil
  • Denis Delic
  • Abdel Azeem Abdel-Baki
  • Frank Wunderlich
Original Paper


Increasing evidence critically implicates miRNAs in the pathogenesis of diseases, but little is known in context with infectious diseases. This study investigates as to whether the testosterone-induced persistent susceptibility to blood-stage malaria of Plasmodium chabaudi coincides with changes in miRNA expression of the anti-malaria effectors sites spleen and liver. Female C57BL/6 mice were treated with vehicle or testosterone (T) for 3 weeks. Then, T treatment was discontinued for 12 weeks before challenge with 106P. chabaudi-parasitized erythrocytes. The miRNA expression was examined after 12 weeks of T withdrawal and during infections at peak parasitemia on day 8 p.i. using miRXplore™ microarray technology. P. chabaudi infections induce an organ-specific response of miRNA expression. We can identify 25 miRNA species to be downregulated by more than 2-fold in the spleen and 169 miRNA species in the liver. Among these 194 miRNA species, there are 12 common miRNA species that are downregulated by 0.48–0.14-fold in both spleen and liver, which are miR-194, miR-192, miR-193A-3P, miR-145, miR-16, miR-99A, miR-99B, miR-15A, miR-152, let-7G, let-7B, and miR-455-3P. Only in the liver, there is an upregulation of the miR-142-5p by 2.5-fold and miR-342-3p by 5.1-fold. After 12 weeks of T withdrawal, the spleen exhibits only the miR-200A that is upregulated by 2.7-fold. In the liver, miR-376B, miR-493*, and miR-188-3P are upregulated by 2.4-fold, 2.2-fold, and 2.1-fold, respectively, and miR-347, miR-200A, and miR-200B are downregulated by approximately 0.4-fold. Upon infection, however, these changes are not sustained, i.e., the miRNA expressions of both spleen and liver of T-pretreated mice exhibit the same response to P. chabaudi malaria as that of vehicle-treated control mice. Our data suggest (1) that the P. chabaudi-induced downregulation of miRNA expression in spleen and liver is required to allow the upregulation of their numerous target genes in response to infection, and (2) that the T-induced persistent susceptibility to P. chabaudi does not affect the responsiveness of miRNA expression in spleen and liver to blood-stage malaria.

Supplementary material

436_2012_2937_Fig4_ESM.jpg (458 kb)
Fig. S1

Expression levels of hepatic miRNA species of unknown functions downregulated by P. chabaudi malaria. Green color represents downregulation as indicated in the logarithmic color scale bar shown in Fig. 2 (JPEG 458 kb)

436_2012_2937_MOESM1_ESM.tif (550 kb)
High resolution image (TIFF 550 kb)
436_2012_2937_MOESM2_ESM.xlsx (16 kb)
Table S1Liver-specific deregulation of miRNA expression of unknown function induced by P. chabaudi malaria in vehicle-treated control mice (XLSX 16 kb)
436_2012_2937_MOESM3_ESM.xlsx (12 kb)
Table S2MicroRNA expression of spleen and liver of T-pretreated and vehicle-treated mice during P. chabaudi malaria on day 8 p.i. (XLSX 12 kb)


  1. Al-Quarishy S, Delic D, Sies H, Wunderlich F, Abdel-Baki AA, Dkhil MA (2011) Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata. Parasitol Res 109:387–394CrossRefGoogle Scholar
  2. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845PubMedCrossRefGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  4. Benten WP, Bettenhaeuser U, Wunderlich F, Van Vliet E, Mossmann H (1991) Testosterone-induced abrogation of self-healing of Plasmodium chabaudi malaria in B10 mice: mediation by spleen cells. Infect Immun 59:4486–4490PubMedGoogle Scholar
  5. Benten WP, Ulrich P, Kühn-Velten WN, Vohr HW, Wunderlich F (1997) Testosterone induced susceptibility to Plasmodium chabaudi malaria: persistence after withdrawal of testosterone. J Endocrinol 153:275–281PubMedCrossRefGoogle Scholar
  6. Bi Y, Liu G, Yang R (2009) MicroRNAs: novel regulators during the immune response. J Cell Physiol 218:467–472PubMedCrossRefGoogle Scholar
  7. Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26:1175–1186PubMedCrossRefGoogle Scholar
  8. Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A (2009) Absolute quantification of microRNAs by using a universal reference. RNA 12:2375–2384CrossRefGoogle Scholar
  9. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8PubMedCrossRefGoogle Scholar
  10. Chotivanich K, Udomsangpetch R, McGready R, Proux S, Newton P, Pukrittayakamee S, Looareesuwan S, White NJ (2002) Central role of the spleen in malaria parasite clearance. J Infect Dis 185:1538–1541PubMedCrossRefGoogle Scholar
  11. Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163PubMedCrossRefGoogle Scholar
  12. Davidson-Moncada J, Papavasiliou FN, Tam W (2010) MicroRNAs of the immune system: roles in inflammation and cancer. Ann NY Acad Sci 1183:183–194PubMedCrossRefGoogle Scholar
  13. Delić D, Gailus N, Vohr HW, Dkhil MA, Al-Quraishy S, Wunderlich F (2010a) Testosterone-induced permanent changes of hepatic gene expression sustained during Plasmodium chabaudi malaria. J Mol Endocrinol 45:379–390PubMedCrossRefGoogle Scholar
  14. Delić D, Grosser C, Dkhil MA, Al-Quraishy S, Wunderlich F (2010b) Testosterone-induced upregulation of miRNAs in the female mouse liver. Steroids 75:988–1004CrossRefGoogle Scholar
  15. Delic D, Warskulat U, Borsch E, Al-Qahtani S, Al-Quraishi S, Häussinger D, Wunderlich F (2010) Loss of ability to self-heal malaria upon taurine transporter deletion. Infect Immun 78:1642–1649PubMedCrossRefGoogle Scholar
  16. Delić D, Dkhil MA, Al-Quraishy S, Wunderlich F (2011) Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria. Parasitol Res 108:1111–1121PubMedCrossRefGoogle Scholar
  17. Garcia LS (2010) Malaria. Clin Lab Med 30:93–129PubMedCrossRefGoogle Scholar
  18. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefGoogle Scholar
  19. Haeussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F (2004) Molecular aspects of medicine: from experirnental to clinical hepatology. Mol Aspects Med 25:221–360CrossRefGoogle Scholar
  20. Hafalla JC, Silvie O, Matuschewski K (2011) Cell biology and immunology of malaria. Immunol Rev 240:297–316PubMedCrossRefGoogle Scholar
  21. Harder A, Danneschewski A, Wunderlich F (1994) Genes of the mouse H-2 complex control the efficacy of testosterone to suppress immunity against the intestinal nematode Heterakis spumosa. Parasitol Res 80:446–448PubMedCrossRefGoogle Scholar
  22. Kamis AB, Ahmad RA, Badrul-Munir MZ (1992) Worm burden and leukocyte response in Angiostrongylus malaysiensis-infected rats: the influence of testosterone. Parasitol Res 78:388–391PubMedCrossRefGoogle Scholar
  23. Krücken J, Dkhil MA, Braun JV, Schroetel RM, El-Khadragy M, Carmeliet P, Mossmann H, Wunderlich F (2005) Testosterone suppresses protective response of the liver to blood-stage malaria. Infect Immun 73:436–443PubMedCrossRefGoogle Scholar
  24. Krücken J, Delić D, Pauen H, Wojtalla A, El-Khadragy M, Dkhil MA, Mossmann H, Wunderlich F (2009) Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria. Malar J 8:54PubMedCrossRefGoogle Scholar
  25. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, BisselsU IJ, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 7:1401–1414CrossRefGoogle Scholar
  26. Li S, Moffett HF, Lu J, Werner L, Zhang H, Ritz J, Neuberg D, Wucherpfennig KW, Brown JR, Novina CD (2011) MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PLoS One 6:e16956PubMedCrossRefGoogle Scholar
  27. Liu L, Wang L, Zhao Y, Wang Y, Wang Z, Qiao Z (2006) Testosterone attenuates p38 MAPK pathway during Leishmania donovani infection of macrophages. Parasitol Res 99:189–193PubMedCrossRefGoogle Scholar
  28. Liu Q, Tuo W, Gao H, Zhu XQ (2010) MicroRNAs of parasites: current status and future perspectives. Parasitol Res 107:501–507PubMedCrossRefGoogle Scholar
  29. Mackinnon MJ, Read AF (2003) The effects of host immunity on virulence-transmissibility relationships in the rodent malaria parasite Plasmodium chabaudi. Parasitology 126:103–112PubMedCrossRefGoogle Scholar
  30. Mannoor MK, Weerasinghe A, Halder RC, Reza S, Morshed M, Ariyasinghe A, Watanabe H, Sekikawa H, Abo T (2001) Resistance to malarial infection is achieved by the cooperation of NK1.1(+) and NK1.1(−) subsets of intermediate TCR cells which are constituents of innate immunity. Cell Immunol 211:96–104PubMedCrossRefGoogle Scholar
  31. Mannoor MK, Halder RC, Morshed SR, Ariyasinghe A, Bakir HY, Kawamura H, Watanabe H, Sekikawa H, Abo T (2002) Essential role of extrathymic T cells in protection against malaria. J Immunol 169:301–306PubMedGoogle Scholar
  32. Mehlhorn H (ed) (2008) Encyclopedic reference of parasitology, vol 1, 3rd edn. Springer, BerlinGoogle Scholar
  33. Murthi P, Kalionis B, Ghabrial H, Dunlop ME, Smallwood RA, Sewell RB (2006) Kupffer cell function during the erythocytic stage of malaria. J Gastroenterol Hepatol 21:313–318PubMedCrossRefGoogle Scholar
  34. Nobes MS, Ghabrial H, Simms KM, Smallwood RB, Morgan DJ, Sewell RB (2002) Hepatic Kupffer cell phagocytotic function in rats with erythrocytic-stage malaria. J Gastroenterol Hepatol 17:598–605PubMedCrossRefGoogle Scholar
  35. Novak M, Myal Y, Evans WS (1981) Testosterone propionate and the growth of Hymenolepis microstoma in intact and orichiectomized mice. Parasitol Res 66:113–115Google Scholar
  36. Pawlicki JM, Steitz JA (2010) Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol 20:52–61PubMedCrossRefGoogle Scholar
  37. Roberts CW, Walker W, Alexander J (2001) Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 14:476–488PubMedCrossRefGoogle Scholar
  38. Ronchetti D, Lionetti M, Mosca L, Agnelli L, Andronache A, Fabris S, Deliliers GL, Neri A (2008) An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma. BMC Med Genomics 13:37–45CrossRefGoogle Scholar
  39. Ruvkun G (2008) The perfect storm of tiny RNAs. Nat Med 10:1041–1045CrossRefGoogle Scholar
  40. Salaun B, Yamamoto T, Badran B, Tsunetsugu-Yokota Y, Roux A, Baitsch L, Rouas R, Fayyad-Kazan H, Baumgaertner P, Devevre E, Ramesh A, Braun M, Speiser D, Autran B, Martiat P, Appay V, Romero P (2011) Differentiation associated regulation of microRNA expression in vivo in human CD8+ T cell subsets. J Transl Med 9:44PubMedCrossRefGoogle Scholar
  41. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887PubMedCrossRefGoogle Scholar
  42. Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR (2011) Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10−/− mice precedes expression in the colon. J Immunol 187(11):5834–5841PubMedCrossRefGoogle Scholar
  43. Stephens R, Culleton RL, Lamb TJ (2012) The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 28:73–82PubMedCrossRefGoogle Scholar
  44. Tablin, F. et al. (2002) The microanatomy of the mammalian spleen: mechanisms of splenic clearance in the complete spleen. (Bowdler, A.J., ed.), pp. 11–22, Humana PressGoogle Scholar
  45. Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ (2010) Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 103(4):532–541PubMedCrossRefGoogle Scholar
  46. Watanabe K, Hamano S, Noda K, Koga M, Tada I (1999) Strongyloides ratti: additive effect of testosterone implantation and carbon injection on the susceptibility of female mice. Parasitol Res 85:522–526PubMedCrossRefGoogle Scholar
  47. WHO (2010) World malaria report. World health organization, GenevaGoogle Scholar
  48. Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, Manjunath N (2007) miRNA profiling of naïve, effector and memory CD8 T cells. PLoS One 2(10):e1020PubMedCrossRefGoogle Scholar
  49. Wu L, Zhou H, Lin H, Qi J, Zhu C, Gao Z, Wang H (2012) Circulating microRNAs are elevated in plasma from severe pre-eclamptic pregnancies. Reproduction 143(3):389–397PubMedCrossRefGoogle Scholar
  50. Wunderlich F, Stübig H, Königk E (1982) Development of Plasmodium chabaudi in mice red blood cells: Structural properties of the host and parasites membranes. J Protozool 29:60–66PubMedGoogle Scholar
  51. Wunderlich F, Mossmann H, Helwig M, Schillinger G (1988) Resistance to Plasmodium chabaudi in B10 mice: influence of the H-2 complex and testosterone. Infect Immun 56:2400–2406PubMedGoogle Scholar
  52. Wunderlich F, Marinovski P, Benten WP, Schmitt-Wrede HP, Mossmann H (1991) Testosterone and other gonadal factor(s) restrict the efficacy of genes controlling resistance to Plasmodium chabaudi malaria. Parasite Immunol 13:357–367PubMedCrossRefGoogle Scholar
  53. Zhang H, Zhao J, Wang P, Qiao Z (2001) Effect of testosterone on Leishmania donovani infection of macrophages. Parasitol Res 87:674–676PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Saleh Al-Quraishy
    • 1
  • Mohamed A. Dkhil
    • 1
    • 2
  • Denis Delic
    • 3
    • 5
  • Abdel Azeem Abdel-Baki
    • 1
    • 4
  • Frank Wunderlich
    • 3
  1. 1.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Zoology and Entomology, Faculty of ScienceHelwan UniversityCairoEgypt
  3. 3.Department of Molecular ParasitologyHeinrich-Heine UniversityDuesseldorfGermany
  4. 4.Department of Zoology, Faculty of ScienceBeni-Suef UniversityCairoEgypt
  5. 5.Max Planck Institute for Neurological ResearchCologneGermany

Personalised recommendations