Parasitology Research

, Volume 111, Issue 1, pp 341–351 | Cite as

A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies

  • Jean-Lou JustineEmail author
  • Marine J. Briand
  • Rodney A. Bray
Original Paper


Many methods have been proposed for collecting and fixing parasites, but most were written before the molecular age, and were intended to be practised by experienced parasitologists in well-equipped laboratories. We describe here a very simple method, illustrated by photographs, for collecting helminths from the digestive tract of vertebrates. It only requires a few plastic vials, some ethanol and a means to heat water. Basically, the method consists of: (a) the extraction of all organs from the abdominal cavity; (b) opening the digestive system longitudinally; (c) agitate gut and contents in a saline solution (i.e. ca. 9% NaCl or 1/4 sea water in tap water); (d) decant in saline as many times as needed to clean contents; (e) immediately fix parasites in near-boiling saline; (f) discard saline and keep specimens in 95% ethanol. Additional information is given for collecting parasites from fish gills with a similar process. The method will collect most helminths (digeneans, larval cestodes, nematodes, acanthocephalans) from the digestive tract, and monogeneans and isopod and copepod crustaceans from fish gills. The specimens will be suitable for both morphological study and DNA sequencing. The method is simple, fast, inexpensive and can be used by untrained personnel, even in the field without electricity and without a binocular microscope. It can also be used by trained parasitologists who need to expedite treatment of abundant samples.


Gastrointestinal Parasite Fish Gill Disodium EDTA Living Parasite Close Vial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



David Gibson (NHM, London) provided literature; Sarah Samadi and Regis Debruyne (MNHN, Paris) discussed DNA conservation. Students (Cyndie Dupoux, Adeline Grugeaud, Isabelle Mary, Sophie Olivier, Charlotte Schoelinck, Aude Sigura) helped in testing various methods; Eva Řehulkova (Masaryk University, Czech Republic) helped in the field.


  1. Albuquerque MC, Ederli NB, Monteiro CM, Rodrigues MLA (2009) Técnica de montagem permanente e morfometria de Ancylostoma caninum (Ercolani, 1859), Oxyspirura mansoni (Cobbold, 1879) Ransom, 1904 e Oesophagostomum columbianum Curtice, 1890. Rev Bras Med Vet 31:80–84Google Scholar
  2. Bakke TA (1988) Morphology of adult Phyllodistomum umblae (Fabricius) (Platyhelminthes, Gorgoderidae): the effect of preparation, killing and fixation procedures. Zool Scr 17:1–13CrossRefGoogle Scholar
  3. Baylis HA (1915) Instructions for collectors: no. 12.—worms. British Museum (Natural History), LondonGoogle Scholar
  4. Berland B (1961a) Nematodes from some Norwegian marine fishes. Sarsia 2:1–50Google Scholar
  5. Berland B (1961b) Use of glacial acetic acid for killing parasitic Nematodes for collection purposes. Nature 191(4795):1320–1321PubMedCrossRefGoogle Scholar
  6. Berland B (1984) Basic techniques involved in helminth preservation. Syst Parasitol 6(4):242–245. doi: 10.1007/bf00012195 CrossRefGoogle Scholar
  7. Bouchet P (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity. Scientific and technological challenges. Fundacion BBVA, Bilbao, pp 31–64Google Scholar
  8. Braun M, Lühe M (1910) A handbook of practical parasitology. John Bale, Sons and Danielsson, LondonGoogle Scholar
  9. Bray RA (1984) The curation of helminths at the British Museum (Natural History). Syst Parasitol 6:251–253CrossRefGoogle Scholar
  10. Bray R, Waeschenbach A, Cribb T, Weedall G, Dyal P, Littlewood D (2009) The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: implications for their systematics and evolution. Acta Parasitol 54(4):310–329. doi: 10.2478/s11686-009-0045-z CrossRefGoogle Scholar
  11. Brooks DR, Hoberg EP (2000) Triage for the biosphere: the need and rationale for taxonomic inventories and phylogenetic studies of parasites. Comp Parasitol 67:1–5Google Scholar
  12. Brooks DR, Hoberg EP (2001) Parasite systematics in the 21st century: opportunities and obstacles. Trends Parasitol 17(6):273–275PubMedCrossRefGoogle Scholar
  13. Bruno DW, Nowak B, Elliott DG (2006) Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections. Dis Aquat Org 70:1–36PubMedCrossRefGoogle Scholar
  14. Bunkley-Williams L, Williams EH (1994) Parasites of Puerto Rican freshwater sport fishes. Puerto Rico Department of Natural and Environmental Resources, San Juan, and Department of Marine Sciences, University of Puerto Rico, MayaguezGoogle Scholar
  15. Burt MDB (1984) Problems with tense tapeworms. Syst Parasitol 6:249CrossRefGoogle Scholar
  16. Campbell RA, Beveridge I (1994) Order Trypanorhyncha Diesing, 1863. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wellingford, pp 51–148Google Scholar
  17. Černotíková E, Horák A, Moravec F (2011) Phylogenetic relationships of some spirurine nematodes (Nematoda: Chromadorea: Rhabditida: Spirurina) parasitic in fishes inferred from SSU rRNA gene sequences. Folia Parasitol 58:135–148PubMedGoogle Scholar
  18. Chakraborty A, Sakai M, Iwatsuki Y (2006) Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques. J Appl Ichthyol 22(2):160–166. doi: 10.1111/j.1439-0426.2006.00718.x CrossRefGoogle Scholar
  19. Chubb JC (1962) Acetic acid as a diluent and dehydrant in the preparation of whole, stained helminths. Biotech Histochem 37:179–182CrossRefGoogle Scholar
  20. Cooper DW (1988) The preparation of serial sections of platyhelminth parasites, with details of the materials and facilities required. Syst Parasitol 12:211–229CrossRefGoogle Scholar
  21. Cribb TH (2004) Living on the edge: parasite taxonomy in Australia. Int J Parasitol 34:117–123PubMedCrossRefGoogle Scholar
  22. Cribb TH, Bray RA (1998) Trematodes of fishes: a test case for predictions of parasite biodiversity on the Great Barrier Reef. In: Greenwood JG, Hall NJ (eds) Australian Coral Reef Society 75th Anniversary Conference. School of Marine Science, The University of Queensland, Brisbane, Heron Island October 1997, pp 43–56Google Scholar
  23. Cribb TH, Bray RA (2010) Gut wash, body soak, blender, and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Syst Parasitol 76:1–7PubMedCrossRefGoogle Scholar
  24. Cribb B, Armstrong W, Whittington I (2004) Simultaneous fixation using glutaraldehyde and osmium tetroxide or potassium ferricyanide-reduced osmium for the preservation of monogenean flatworms: an assessment for Merizocotyle icopae. Microsc Res Tech 63(2):102–110. doi: 10.1002/jemt.20015 PubMedCrossRefGoogle Scholar
  25. Criscione CD, Font WF (2001) Artifactual and natural variation of Oochoristica javaensis: statistical evaluation of in situ fixation. Comp Parasitol 68(2):156–163Google Scholar
  26. Deveney M, Whittington ID (2001) A technique for preserving pigmentation in some capsalid monogeneans for taxonomic purposes. Syst Parasitol 48(1):31–35. doi: 10.1023/a:1026558405617 PubMedCrossRefGoogle Scholar
  27. Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W (2008) Homage to Linnaeus: how many parasites? How many hosts? Proc Natl Acad Sci U S A 105:11482–11489. doi: 10.1073/pnas.0803232105 PubMedCrossRefGoogle Scholar
  28. Dujardin F (1845) Histoire naturelle des helminthes ou vers intestinaux. Librairie encyclopédique de Roret, ParisCrossRefGoogle Scholar
  29. Durette-Desset M-C (1984) Techniques de récolte, de fixation et de conservation des Nématodes parasites de Vertébrés. Syst Parasitol 6:248CrossRefGoogle Scholar
  30. Fagerholm HP (1979) Nematode length and preservatives, with a method for determining the length of live specimens. J Parasitol 65(2):334–335PubMedCrossRefGoogle Scholar
  31. Fagerholm H-P, Lövdahl M (1984) Induced morphometric variation in the preparation of nematode parasites for the LM and SEM. Syst Parasitol 6(4):245–247. doi: 10.1007/bf00012196 CrossRefGoogle Scholar
  32. Frampton M, Droege S, Conrad T, Prager S, Richards MH (2008) Evaluation of specimen preservatives for DNA analyses of bees. J Hymenopt Res 17:195–200Google Scholar
  33. Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8(11):1935–1945. doi: 10.1046/j.1365-294x.1999.00795.x PubMedCrossRefGoogle Scholar
  34. Galli P, Strona G, Villa AM, Benzoni F, Stefani F, Doglia SM, Kritsky DC (2006) Three-dimensional imaging of monogenoidean sclerites by laser scanning confocal fluorescence microscopy. J Parasitol 92:395–399PubMedCrossRefGoogle Scholar
  35. Galli P, Strona G, Villa AM, Benzoni F, Stefani F, Doglia SM, Kritsky DC (2007) Two-dimensional versus three-dimensional morphometry of monogenoidean sclerites. Int J Parasitol 37(3–4):449–456PubMedCrossRefGoogle Scholar
  36. García-Vásquez A, Shinn A, Bron J (2011) Development of a light microscopy stain for the sclerites of Gyrodactylus von Nordmann, 1832 (Monogenea) and related genera. Parasitol Res. doi: 10.1007/s00436-011-2675-y
  37. Garvin MC, Bates JM, Kinsella JM (1997) Field techniques for collecting and preserving helminth parasites from birds, with new geographic and host records of parasitic nematodes from Bolivia. Ornithol Monogr 48:261–266Google Scholar
  38. Gibson DI (1979) Materials and methods in helminth alpha-taxonomy. Parasitology 79:r36Google Scholar
  39. Gibson DI (1984) Technology as applied to museum collections: the collection, fixation and conservation of helminths. Syst Parasitol 6:241CrossRefGoogle Scholar
  40. Gläser H-J (1965) Zur Kenntnis der Gattung Dactylogyrus Diesing 1850 (Monogenoidea). Z ParasitenKde 25(5):459–484Google Scholar
  41. Grutter AS (1995) Comparison of methods for sampling ectoparasites from coral reef fishes. Mar Freshw Res 46:897–903CrossRefGoogle Scholar
  42. Gusev AV (1983) Methods for collection and preparation of monogeneans parasitizing fish. Nauka, LeningradGoogle Scholar
  43. Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitfield JB, Hebert PDN (2006) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 6(4):959–964. doi: 10.1111/j.1471-8286.2006.01470.x CrossRefGoogle Scholar
  44. Hanson Pritchard M, Kruse G (1984) Making the best of things: reclaiming specimens. Syst Parasitol 6(4):253–255. doi: 10.1007/bf00012201 CrossRefGoogle Scholar
  45. Hargis WJ Jr (1953) Chloretone as a Trematode relaxer, and its use in mass-collecting techniques. J Parasitol 39(2):224–225CrossRefGoogle Scholar
  46. Harris PD, Cable J, Tinsley RC, Lazarus CM (1999) Combined ribosomal DNA and morphological analysis of individual gyrodactylid monogeneans. J Parasitol 85(2):188–191PubMedCrossRefGoogle Scholar
  47. Hendrix SS (1994) Marine flora and fauna of the eastern United States. Platyhelminthes: Monogenea. NOAA Technical Report NMFS 121. US Department of Commerce, SeattleGoogle Scholar
  48. Herniou EA, Pearce AC, Littlewood DTJ (1998) Vintage helminths yield valuable molecules. Parasitol Today 14(7):289–292PubMedCrossRefGoogle Scholar
  49. Hoberg EP, Pilitt PA, Galbreath KE (2009) Why museums matter: a tale of pinworms (Oxyuroidea: Heteroxynematidae) among pikas (Ochotona princeps and O. collaris) in the American West. J Parasitol 95:490–501PubMedCrossRefGoogle Scholar
  50. Huber JT (1998) The importance of voucher specimens, with practical guidelines for preserving specimens of the major invertebrate phyla for identification. J Nat Hist 32(3):367–385CrossRefGoogle Scholar
  51. Jeon H-K, Kim K-H, Eom KS (2011) Molecular identification of Taenia specimens after long-term preservation in formalin. Parasitol Int 60(2):203–205PubMedCrossRefGoogle Scholar
  52. Justine J-L (2005) Species of Pseudorhabdosynochus Yamaguti, 1958 (Monogenea: Diplectanidae) from Epinephelus fasciatus and E. merra (Perciformes: Serranidae) off New Caledonia and other parts of the Indo-Pacific Ocean, with a comparison of measurements of specimens prepared using different methods, and a description of P. caledonicus n. sp. Syst Parasitol 62(1):1–37. doi: 10.1007/s11230-005-5480-0 PubMedCrossRefGoogle Scholar
  53. Justine J-L (2007) Huffmanela spp. (Nematoda, Trichosomoididae) parasites in coral reef fishes off New Caledonia, with descriptions of H. balista n. sp. and H. longa n. sp. Zootaxa 1628:23–41Google Scholar
  54. Justine J-L (2010) Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia. Belg J Zool 140(Suppl):155–190Google Scholar
  55. Justine J-L, Grugeaud A (2010) Does the number of sclerotised structures used for the systematics of monogeneans change with age? A study of the monocotylid Dendromonocotyle pipinna. Parasitol Res 107:1509–1514PubMedCrossRefGoogle Scholar
  56. Justine J-L, Beveridge I, Boxshall GA, Bray RA, Moravec F, Trilles J-P, Whittington ID (2010a) An annotated list of parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected in groupers (Serranidae, Epinephelinae) in New Caledonia emphasizes parasite biodiversity in coral reef fish. Folia Parasitol 57:237–262PubMedGoogle Scholar
  57. Justine J-L, Beveridge I, Boxshall GA, Bray RA, Moravec F, Whittington ID (2010b) An annotated list of fish parasites (Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected from Emperors and Emperor Bream (Lethrinidae) in New Caledonia further highlights parasite biodiversity estimates on coral reef fish. Zootaxa 2691:1–40Google Scholar
  58. Kennedy MJ (1979) Basic methods of specimen preparation in parasitology. International Development Research Centre, OttawaGoogle Scholar
  59. King JR, Porter SD (2004) Recommendations on the use of alcohols for preservation of ant specimens (Hymenoptera, Formicidae). Insect Soc 51(2):197–202. doi: 10.1007/s00040-003-0709-x CrossRefGoogle Scholar
  60. Klopfleisch R, Weiss ATA, Gruber AD (2011) Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol Histopathol 26:797–810PubMedGoogle Scholar
  61. Košková E, Matějusová I, Civáňová K, Koubková B (2011) Ethanol-fixed material used for both classical and molecular identification purposes: Eudiplozoon nipponicum (Monogenea: Diplozoidae) as a case parasite species. Parasitol Res 107(4):909–914. doi: 10.1007/s00436-010-1949-0 CrossRefGoogle Scholar
  62. Kritsky D, Bakenhaster M (2011) Monogenoidean parasites of the gill lamellae of the sheepshead Archosargus probatocephalus (Walbaum) (Perciformes: Sparidae) from the Indian River Lagoon, Florida, with descriptions of four new species of Euryhaliotrema Kritsky & Boeger, 2002 (Dactylogyridae). Syst Parasitol 78(1):57–68. doi: 10.1007/s11230-010-9282-7 PubMedCrossRefGoogle Scholar
  63. Kritsky DC, Fennessy CJ (1999) Calicobenedenia polyprioni n. gen., n. sp. (Monogenoidea: Capsalidae) from the external surfaces of wreckfish, Polyprion americanus (Teleostei: Polyprionidae), in the North Atlantic. J Parasitol 85:192–195PubMedCrossRefGoogle Scholar
  64. Kritsky DC, Leiby PD, Kayton RJ (1978) A rapid stain technique for the haptoral bars of Gyrodactylus species (Monogenea). J Parasitol 64:172–174PubMedCrossRefGoogle Scholar
  65. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty KD (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454(7203):515–518. doi: 10.1038/nature06970 PubMedCrossRefGoogle Scholar
  66. Lachenmeier DW, Rehm J, Gmel G (2007) Surrogate alcohol: what do we know and where do we go? Alcohol Clin Exp Res 31(10):1613–1624. doi: 10.1111/j.1530-0277.2007.00474.x PubMedCrossRefGoogle Scholar
  67. Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci U S A 103(30):11211–11216. doi: 10.1073/pnas.0604755103 PubMedCrossRefGoogle Scholar
  68. Lichtenfels J (1984) Methods for conserving, storing, and studying helminths in the U.S. National Parasite Collection. Syst Parasitol 6(4):250–251. doi: 10.1007/bf00012199 CrossRefGoogle Scholar
  69. Lim LHS (1991) Preparation of Museum specimens—Monogenea. Fish Health Sect Newsl 2:10–11Google Scholar
  70. Maillard C, Gonzalez J, Noisy D (1982) A scanning electron microscope study of the male copulatory sclerite of the monogenean Diplectanum aequans. Parasitology 84:63–64CrossRefGoogle Scholar
  71. Malmberg G (1957) Om förekomsten av Gyrodactylus på svenska fiskar (In Swedish.). Skrifter Utgivna av Södra Sveriges Fiskeriförening. Årsskrift 1956:19–76Google Scholar
  72. Manter HW (1926) Some North American fish Trematodes. Illinois Biological Monographs, 10. University of Illinois, UrbanaGoogle Scholar
  73. McCue JF, Thorson RE (1963) A rapid method for collecting large numbers of intestinal helminths. J Parasitol 49(6):997PubMedCrossRefGoogle Scholar
  74. McDougal HD, Mizelle JD (1969) Studies on Monogenetic Trematodes. XLIV. A new method for collection of Monogenea. Trans Am Microsc Soc 88(3):445–447PubMedCrossRefGoogle Scholar
  75. Miller TL, Bray RA, Goiran C, Justine J-L, Cribb TH (2009) Adlardia novaecaledoniae n.g., n. sp. (Digenea: Cryptogonimidae) from the fork-tailed threadfin bream Nemipterus furcosus (Val.) (Perciformes: Nemipteridae) off New Caledonia. Syst Parasitol 73:151–160PubMedCrossRefGoogle Scholar
  76. Miller TL, Adlard RD, Bray RA, Justine J-L, Cribb TH (2010a) Cryptic species of Euryakaina n. g. (Digenea: Cryptogonimidae) from sympatric lutjanids in the Indo-West Pacific. Syst Parasitol 77:185–204PubMedCrossRefGoogle Scholar
  77. Miller TL, Bray RA, Justine J-L, Cribb TH (2010b) Varialvus gen. nov. (Digenea, Cryptogonimidae), from species of Lutjanidae (Perciformes) off the Great Barrier Reef, New Caledonia and the Maldives. Acta Parasitol 55(4):327–339. doi: 10.2478/s11686-010-0045-z CrossRefGoogle Scholar
  78. Milne SJ, Avenant-Oldewage A (2006) The fluorescent detection of Paradiplozoon sp. (Monogenea: Diplozoidae) attachment clamps' sclerites and integumental proteins: research communication. Onderstepoort J Vet Res 73:149–152PubMedGoogle Scholar
  79. Mizelle JD (1936) New species of Trematodes from the gills of Illinois fishes. Am Midl Nat 17(5):785–806CrossRefGoogle Scholar
  80. Mizelle JD (1938) Comparative studies on Trematodes (Gyrodactyloidea) from the gills of North-American fresh-water fishes. Illinois Biological Monographs, 17(1). The University of Illinois Press, UrbanaGoogle Scholar
  81. Mo TA, Appleby C (1990) A special technique for studying haptoral sclerites of monogeneans. Syst Parasitol 17:103–108CrossRefGoogle Scholar
  82. Monteiro C, Kritsky DC, Brasil-Sato M (2010) Neotropical Monogenoidea. 55. Dactylogyrids parasitising the pintado-amarelo Pimelodus maculatus Lacépède (Actinopterygii: Pimelodidae) from the Rio São Francisco, Brazil. Syst Parasitol 76(3):179–190. doi: 10.1007/s11230-010-9250-2 PubMedCrossRefGoogle Scholar
  83. Moravec F (1994) Parasitic nematodes of freshwater fishes of Europe. Academia, PrahaGoogle Scholar
  84. Moravec F (2001) Trichinelloid nematodes parasitic in cold-blooded vertebrates. Academia, PrahaGoogle Scholar
  85. Moravec F, Justine J-L (2005) Two species of Philometra (Nematoda, Philometridae) from serranid fishes off New Caledonia. Acta Parasitol 50(4):323–331Google Scholar
  86. Moravec F, Justine J-L (2010a) Some trichinelloid nematodes from marine fishes off New Caledonia, including description of Pseudocapillaria novaecaledoniensis sp. nov. (Capillariidae). Acta Parasitol 55:71–80CrossRefGoogle Scholar
  87. Moravec F, Justine J-L (2010b) Two new genera and species of cystidicolids (Nematoda, Cystidicolidae) from marine fishes off New Caledonia. Parasitol Int 59:198–205. doi: 10.1016/j.parint.2010.01.005 PubMedCrossRefGoogle Scholar
  88. Nadler S (1999) Nucleotide sequences from vintage helminths: fine wine or vinegar? Parasitol Today 15(3):122PubMedCrossRefGoogle Scholar
  89. Naem S, Pagan C, Nadler SA (2010) Structural restoration of nematodes and acanthocephalans fixed in high percentage alcohol using DESS solution and rehydration. J Parasitol 96:809–811PubMedCrossRefGoogle Scholar
  90. Nagy Z (2010) A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol 10(1):91–105. doi: 10.1007/s13127-010-0012-4 CrossRefGoogle Scholar
  91. Newman LJ, Cannon LRG (1995) The importance of the fixation of color, pattern and form in tropical Pseudocerotidae (Platyhelminthes, Polycladida). Hydrobiologia 305(1–3):141–143CrossRefGoogle Scholar
  92. Nichols E, Gomez A (2011) Conservation education needs more parasites. Biol Conserv 144(2):937–941. doi: 10.1016/j.biocon.2010.10.025 CrossRefGoogle Scholar
  93. Olson PD, Caira JN, Jensen K, Overstreet RM, Palm HW, Beveridge I (2010) Evolution of the trypanorhynch tapeworms: parasite phylogeny supports independent lineages of sharks and rays. Int J Parasitol 40:223–242PubMedCrossRefGoogle Scholar
  94. Pariselle A, Lambert A, Euzet L (1991) A new type of haptor in mesoparasitic monogeneans of the genus Enterogyrus Paperna, 1963, with a description of Enterogyrus foratus n. sp. and E. coronatus n. sp, stomach parasites of cichlids in West Africa. Syst Parasitol 20(3):211–220. doi: 10.1007/bf00009785 CrossRefGoogle Scholar
  95. Parker JH, Curran SS, Overstreet RM, Tkach VV (2010) Examination of Homalometron elongatum Manter, 1947 and description of a new congener from Eucinostomus currani Zahuranec, 1980 in the Pacific Ocean off Costa Rica. Comp Parasitol 77(2):154–163CrossRefGoogle Scholar
  96. Perkins EM, Donnellan SC, Bertozzi T, Chisholm LA, Whittington ID (2009) Looks can deceive: molecular phylogeny of a family of flatworm ectoparasites (Monogenea: Capsalidae) does not reflect current morphological classification. Mol Phylogenet Evol 52:705–714. doi: 10.1016/j.ympev.2009.05.008 PubMedCrossRefGoogle Scholar
  97. Post RJ, Flook PK, Millest AL (1993) Methods for the preservation of insects for DNA studies. Biochem Syst Ecol 21(1):85–92CrossRefGoogle Scholar
  98. Poulin R (2004) Parasite species richness in New Zealand fishes: a grossly underestimated component of biodiversity? Divers Distrib 10:31–37CrossRefGoogle Scholar
  99. Poulin R, Leung TLF (2010) Taxonomic resolution in parasite community studies: are things getting worse? Parasitology 137:1967–1973. doi: 10.1017/S0031182010000910 PubMedCrossRefGoogle Scholar
  100. Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75(3):277–293PubMedCrossRefGoogle Scholar
  101. Poulin R, Morand S (2004) Parasite biodiversity. Smithsonian Books, WashingtonGoogle Scholar
  102. Pritchard MH, Kruse GOW (1982) The collection and preservation of animal parasites. University of Nebraska Press, LincolnGoogle Scholar
  103. Quicke DLJ, Lopez-Vaamonde C, Belshaw R (1999) Preservation of hymenopteran specimens for subsequent molecular and morphological study. Zool Scr 28(1–2):261–267. doi: 10.1046/j.1463-6409.1999.00004.x CrossRefGoogle Scholar
  104. Richards GR, Chubb JC (1995) Trichrome staining of Gyrodactylus sclerites and soft tissues following fixation in ammonium picrate-glycerin, including an improved rendition of the haptoral bars of G. tumbulli. J Helminthol 69:149–154PubMedCrossRefGoogle Scholar
  105. Rogers WA (1966) Three new species of Pseudomurraytrema (Trematoda: Monogenea) from gills of catostomid fishes. J Parasitol 52(3):462–465PubMedCrossRefGoogle Scholar
  106. Rohde K (1987) Different populations of Scomber australasicus in New Zealand and south-eastern Australia, demonstrated by a simple method using monogenean sclerites. J Fish Biol 30(6):651–657. doi: 10.1111/j.1095-8649.1987.tb05794.x CrossRefGoogle Scholar
  107. Rohde K (2001) Marine parasite diversity and environmental gradients. In: Levin S (ed) Encyclopedia of Biodiversity, vol 1. Academic, New York, pp 73–88Google Scholar
  108. Rohde K, Watson N (1985) Morphology, microhabitats and geographical variation of Kuhnia spp. (Monogenea: Polyopisthocotylea). Int J Parasitol 15(5):569–586CrossRefGoogle Scholar
  109. Schmidt GD (1986) CRC handbook of tapeworm identification. CRC Press, Boca Raton, FloridaGoogle Scholar
  110. Shinn AP, Gibson DI, Sommerville C (1993) An SEM study of the haptoral sclerites of the genus Gyrodactylus Nordmann, 1832 (Monogenea) following extraction by digestion and sonication techniques. Syst Parasitol 25(2):135–144. doi: 10.1007/bf00009983 CrossRefGoogle Scholar
  111. Shinn AP, Collins C, Garcia-Vasquez A, Snow M, Matejusova I, Paladini G, Longshaw M, Lindenstrøm T, Stone DM, Turnbull JF, Picon-Camacho SM, Rivera CV, Duguid RA, Mo TA, Hansen H, Olstad K, Cable J, Harris PD, Kerr R, Graham D, Monaghan SJ, Yoon GH, Buchmann K, Taylor NGH, Bakke TA, Raynard R, Irving S, Bron JE (2010) Multi-centre testing and validation of current protocols for the identification of Gyrodactylus salaris (Monogenea). Int J Parasitol 40(12):1455–1467PubMedCrossRefGoogle Scholar
  112. Simsek S, Kaplan M, Ozercan I (2011) A comprehensive molecular survey of Echinococcus granulosus in formalin-fixed paraffin-embedded tissues in human isolates in Turkey. Parasitol Int 109(2):411–416. doi: 10.1007/s00436-011-2269-8 CrossRefGoogle Scholar
  113. Snyder SD, Clopton RE (2005) New methods for the collection and preservation of spirorchiid trematodes and polystomatid monogeneans from turtles. Comp Parasitol 72:102–107CrossRefGoogle Scholar
  114. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161(6):1961–1971PubMedCrossRefGoogle Scholar
  115. Strona G, Stefani F, Galli P (2009) Field preservation of monogenean parasites for molecular and morphological analyses. Parasitol Int 58(1):51–54PubMedCrossRefGoogle Scholar
  116. Thatcher VE (2006) Amazon fish parasites. ABLA Series, Vol. 1. Aquatic Biodiversity of Latin America (ABLA Series). Pensoft, Sofia, BulgariaGoogle Scholar
  117. Toe L, Back C, Adjami AG, Tang JM, Unnasch TR (1997) Onchocerca volvulus: comparison of field collection methods for the preservation of parasite and vector samples for PCR analysis. Bull World Health Organ 75(5):443–447PubMedGoogle Scholar
  118. Unnithan RV (1957) On the functional morphology of a new fauna of Monogenea on fishes drom Trivandrum and environs. Part I, Axinidae Fam. nov. Bull Cent Res Inst Univ Kerala Ser C 5:27–122Google Scholar
  119. Van Beneden P-J (1878) Les commensaux et les parasites dans le règne animal. Librairie Germer Baillière et Cie, ParisGoogle Scholar
  120. Van Beneden P-J (1887) Animal parasites and messmates. Appleton, New YorkGoogle Scholar
  121. Vannier-Santos MA, Lenzi HL (2011) Parasites or cohabitants: cruel omnipresent usurpers or creative “éminences grises”? J Parasitol Res 2011:19. doi: 10.1155/2011/214174, Article ID 214174Google Scholar
  122. Vickerman K (2009) Not a very nice subject. Changing views of parasites and parasitology in the twentieth century. Parasitology 136(12):1395–1402. doi: 10.1017/s0031182009990825 PubMedCrossRefGoogle Scholar
  123. Whittington ID, Chisholm LA (2003) Biodiversity of marine parasites in Australia: more than just a list of largely invisible creatures. Rec S Aust Mus Monogr Ser 7:51–60Google Scholar
  124. Williams EHJ, Bunkley-Williams L, Dowgiallo MJ, Dyer WG (1991) Influence of collection methods on the occurrence of alimentary canal helminth parasites in fish. J Parasitol 77:1019–1022PubMedCrossRefGoogle Scholar
  125. Windsor DA (1995) Equal rights for parasites. Conserv Biol 9(1):1–2. doi: 10.1046/j.1523-1739.1995.09010001.x CrossRefGoogle Scholar
  126. Windsor DA (1998) Most of species on Earth are parasites. Int J Parasitol 28:1939–1941PubMedCrossRefGoogle Scholar
  127. Wong WL, Tan WB, Lim LHS (2006) Sodium dodecyl sulphate as a rapid clearing agent for studying the hard parts of monogeneans and nematodes. J Helminthol 80:87–90. doi: 10.1079/JOH2005320 PubMedCrossRefGoogle Scholar
  128. Yamaguti S (1965a) New digenetic trematodes from Hawaiian fishes, I. Pac Sci 19:458–481Google Scholar
  129. Yamaguti S (1965b) Preparation of stained whole mounts of flatworms. Trans Am Microsc Soc 84:602–603PubMedCrossRefGoogle Scholar
  130. Yamaguti S (1968) Monogenetic trematodes of Hawaiian Fishes. University of Hawaii Press, HonoluluGoogle Scholar
  131. Yoder M, De Ley IT, King IW, Mundo-Ocampo M, Mann J, Blaxter M, Poiras L, De Ley P (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jean-Lou Justine
    • 1
    Email author
  • Marine J. Briand
    • 2
  • Rodney A. Bray
    • 3
  1. 1.UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire NaturelleParis Cedex 05France
  2. 2.Laboratoire LIVE, Équipe Écologie MarineUniversité de la Nouvelle-CalédonieNouméa CedexNew Caledonia
  3. 3.Department of ZoologyNatural History MuseumLondonUK

Personalised recommendations