Advertisement

Parasitology Research

, Volume 110, Issue 5, pp 1881–1892 | Cite as

Morphological features of the nasal blood fluke Trichobilharzia regenti (Schistosomatidae, Digenea) from naturally infected hosts

  • Karl SkírnissonEmail author
  • Libuse Kolářová
  • Petr Horák
  • Hubert Ferté
  • Damien Jouet
Original Paper

Abstract

The first author detected the nasal bird schistosome Trichobilharzia regenti in Iceland in Anas platyrhynchos in Landmannalaugar in autumn of 2003. Since then, measurements and morphological studies have been performed on fresh worms (fragments) obtained in the area from naturally infected ducks, A. platyrhynchos and Aythya marila. In the present study, we compare our findings to the original description of T. regenti by Horák et al. (Parasite 5:349–357, 1998) that relies upon worms obtained by experimental infections of A. platyrhynchos f. domestica and Cairina moschata f. domestica ducklings. Fragments obtained from naturally infected birds are markedly larger than those obtained in the experimental infection. Also, indistinct sex-related size difference was confirmed; males were more abundant in the material than females. Previously unknown morphological features detected in the present study include, e.g. subterminal spines on the oral sucker directed to the oral opening, spine pattern on the apical part of acetabulum and long tegumental spines (up to 16 μm) in the gonad and tail regions of both sexes. In males, we evaluated for the first time the morphology of the cirrus sac enclosing ejaculatory duct, prostata and the entire prostatic region, the course of vas deferens and the position of genital papilla. In females, the posterior part of the reproductive system was studied for the first time. The presence of the Laurer’s canal was confirmed and its course from the oviduct to the surface, where spermatozoa were noticed to leave the canal, was described.

Keywords

Oral Sucker Infected Bird Mute Swan Bird Schistosome Tegumental Spine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

In Iceland, the authors would like to thank Broddi Hilmarsson, Freyr Björnsson, Guðmundur Tryggvi Ólafsson and Þorvaldur Björnsson for bird sampling. Kirill V. Galaktionov is thanked for valuable comments on digenean morphology and evolution. Financial support was provided by the Research Fund of the University of Iceland and the Jules Verne Program for French–Icelandic scientific cooperation. The work of PH was supported by the Ministry of Education of the Czech Republic (grant nos. MSM 0021620828 and MSM LC06009) and the Czech Science Foundation (grant no. 206/09/H026).

References

  1. Aldhoun JA, Kolářová L, Horák P, Skírnisson K (2009) Bird schistosome diversity in Iceland: molecular evidence. J Helminthol 83:173–180PubMedCrossRefGoogle Scholar
  2. Baugh SC (1963) Contribution to our knowledge of digenetic trematodes VI. Z Parasitenkunde 22:303–315CrossRefGoogle Scholar
  3. Blair D, Islam KS (1983) The life-cycle and morphology of Trichobilharzia australis n.sp. (Digenea: Schistosomatidae) from the nasal blood vessels of the black duck (Anas superciliosa) in Australia, with a review of the genus Trichobilharzia. Syst Parasitol 5:89–117CrossRefGoogle Scholar
  4. Bourns TKR, Ellis JC, Rau ME (1973) Migration and development of Trichobilharzia ocellata (Trematoda: Schistosomatidae) in its duck hosts. Can J Zool 51:1021–1030PubMedCrossRefGoogle Scholar
  5. Fain A (1955a) Une nouvelle bilharziose des oiseaux: la trichobilharziose nasale. Remarque sur l’importance des Schistosomes d’oiseaux en pathologie humaine. Note préliminaire. Ann Soc Belg Med Trop 35:323–327Google Scholar
  6. Fain A (1955b) Recherche sur les Schistosomes d’oiseaux au Ruanda-Urundi (Congo belge). Découverte d’une nouvelle bilharzie aviaire: la Trichobilharzie nasale, et description de Schistosomes nouveaux. Note préliminaire. Rev Zool Bot Afr 51:373–387Google Scholar
  7. Fain A (1956a) Les Schistosomes d’oiseaux du genre Trichobilharzia Skrjabin et Zakharow, 1920 au Ruanda-Urundi. Rev Zool Bot Afr 54:147–178Google Scholar
  8. Fain A (1959) Un nouveau schistosome du genre Trichobilharzia dans les fosses nasales du Canard nain. Rev Zool Bot Afr 60:227–232Google Scholar
  9. Galaktionov KV, Dobrovolskij AA (2003) The biology and evolution of trematodes. Kluwer Academic Publishers, DordrechtGoogle Scholar
  10. Horák P, Kolářová L, Dvořák J (1998) Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite 5:349–357PubMedGoogle Scholar
  11. Islam KS (1986) The morphology and life-cycle of Trichobilharzia arcuata n. sp. (Schistosomatidae: Bilharziellinae) a nasal schistosome of water whistle ducks (Dendrocygna arcuata) in Australia. Syst Parasitol 8:117–128CrossRefGoogle Scholar
  12. Islam KS, Copeman DB (1986) The morphology and life-cycle of Trichobilharzia parocellata (Johnston & Simpson, 1939) Islam & Copeman, 1980 from visceral blood vessels of Australian anatids. Syst Parasitol 8:39–49CrossRefGoogle Scholar
  13. Jouet D, Skírnisson K, Kolářová L, Ferté H (2010) Determination of the final hosts and variability of Trichobilharzia regenti under natural conditions. Parasitol Res 107:923–930PubMedCrossRefGoogle Scholar
  14. Kolářová L, Horák P, Skírnisson K (2010) Methodical approaches in the identification of areas with a potential risk of infection by bird schistosomes causing cercarial dermatitis. J Helminthol 84:327–335PubMedCrossRefGoogle Scholar
  15. McMullen DB, Beaver PC (1945) Studies on schistosome dermatitis. IX. The life cycles of three dermatitis-producing schistosomes from birds and a discussion of the subfamily Bilharziellinae (Trematoda: Schistosomatidae). Am J Hyg 42:128–154Google Scholar
  16. Neuhaus W (1952) Der Einfluss des Zwischenwirtes auf die Gestalt der Cercariae von Trichobilharzia szidati Neuhaus, 1951 und ihre systematische Kennzeichnung. Zool Anz 148:275–285Google Scholar
  17. Rudolfová J, Sitko J, Horák P (2002) Nasal schistosomes of wildfowl in the Czech Republic. Parasitol Res 88:1093–1095PubMedCrossRefGoogle Scholar
  18. Rudolfová J, Littlewood DT, Sitko J, Horák P (2007) Bird schistosomes of wildfowl in the Czech Republic and Poland. Folia Parasitol 54:88–93PubMedGoogle Scholar
  19. Skírnisson K (2010) Bird schistosomes and swimmer’s itch in Iceland. Náttúrufræðingurinn 79:71–81 (In Icelandic with English summary)Google Scholar
  20. Skírnisson K, Kolářová L (2005) Swimmer’s itch in Landmannalaugar, Iceland. Icel Med J 91:729–736 (In Icelandic with English summary)Google Scholar
  21. Skírnisson K, Kolářová L (2008) Diversity of bird schistosomes in anseriform birds in Iceland based on egg measurements and egg morphology. Parasitol Res 103:43–50PubMedCrossRefGoogle Scholar
  22. Skírnisson K, Aldhoun JA, Kolářová L (2009) A review of swimmer’s itch and the occurrence of bird schistosomes in Iceland. J Helminthol 83:165–171PubMedCrossRefGoogle Scholar
  23. Skrjabin KI (1947) Trematodes of animals and man. Akademii Nauk SSSR, MoscowGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Karl Skírnisson
    • 1
    Email author
  • Libuse Kolářová
    • 2
  • Petr Horák
    • 3
  • Hubert Ferté
    • 4
  • Damien Jouet
    • 4
  1. 1.Laboratory of Parasitology, Institute for Experimental PathologyUniversity of IcelandReykjavíkIceland
  2. 2.Institute of Immunology and Microbiology of the First Faculty of MedicineCharles University in Prague and General Teaching HospitalPrague 2Czech Republic
  3. 3.Department of Parasitology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  4. 4.JE 2533–USC Anses “VECPAR”, UFR de PharmacieUniversité de Reims Champagne–ArdenneReimsFrance

Personalised recommendations