Parasitology Research

, Volume 110, Issue 4, pp 1403–1410 | Cite as

Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris

  • Silvio ErlerEmail author
  • Stefanie Lommatzsch
  • H. Michael G. Lattorff
Original Paper


Global pollinator decline has recently been discussed in the context of honey and bumble bee infections from various pathogens including viruses, bacteria, microsporidia and mites. The microsporidian pathogens Nosema apis, Nosema ceranae and Nosema bombi may in fact be major candidates contributing to this decline. Different molecular and non-molecular detection methods have been developed; however, a comparison, especially of the highly sensitive PCR based methods, is currently lacking. Here, we present the first comparative quantitative real-time PCR study of nine Nosema spp. primers within the framework of primer specificity and sensitivity. With the help of dilution series of defined numbers of spores, we reveal six primer pairs amplifying N. apis, six for N. bombi and four for N. ceranae. All appropriate primer pairs detected an amount of at least 104 spores, the majority of which were even as sensitive to detect such low amounts as 103 to ten spores. Species specificity of primers was observed for N. apis and N. bombi, but not for N. ceranae. Additionally, we did not find any significant correlation for the amplified fragments with PCR efficiency or the limit of detection. We discuss our findings on the background of false positive and negative results using quantitative real-time PCR. On the basis of these results, future research might be based on appropriate primer selection depending on the experimental needs. Primers may be selected on the basis of specificity or sensitivity. Pathogen species and load may be determined with higher precision enhancing all kinds of diagnostic studies.


Colony Collapse Disorder Nosema Species Nosema Infection Pollinator Decline Theoretical Detection Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the group of Paul Schmid-Hempel (ETH Zurich) for providing N. bombi-infected bumble bees and Denise Kleber for technical assistance within the lab. Financial support was granted by the Bundesministerium für Bildung und Forschung (BMBF) program FUGATO-Plus (FKZ: 0315126 to HMGL).

Supplementary material

436_2011_2640_MOESM1_ESM.pdf (516 kb)
ESM 1 (PDF 515 kb)


  1. Bérénos C, Schmid-Hempel P, Wegner KM (2009) Evolution of host resistance and trade-offs between virulence and transmission potential in an obligately killing parasite. J Evol Biol 22:2049–2056PubMedCrossRefGoogle Scholar
  2. Bhat SA, Bashir I, Kamili AS (2009) Microsporidiosis of silkworm, Bombyx mori L. (Lepidoptera-bombycidae): a review. Afr J Agricult Res 4:1519–1523Google Scholar
  3. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354PubMedCrossRefGoogle Scholar
  4. Bourgeois AL, Rinderer TE, Beaman LD, Danka RG (2010) Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. J Invertebr Pathol 103:53–58PubMedCrossRefGoogle Scholar
  5. Bromenshenk JJ, Henderson CB, Wick CH, Stanford MF, Zulich AW, Jabbour RE, Deshpande SV, McCubbin PE, Seccomb RA, Welch PM, Williams T, Firth DR, Skowronski E, Lehmann MM, Bilimoria SL, Gress J, Wanner KW, Cramer RA Jr (2010) Iridovirus and microsporidian linked to honey bee colony decline. PloS ONE 5(10):e13181PubMedCrossRefGoogle Scholar
  6. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. PNAS USA 108:662–667PubMedCrossRefGoogle Scholar
  7. Chaimanee V, Warrit N, Chantawannakul P (2010) Infections of Nosema ceranae in four different honeybee species. J Invertebr Pathol 105:207–210PubMedCrossRefGoogle Scholar
  8. Chen YP, Huang ZY (2010) Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 41:364–374CrossRefGoogle Scholar
  9. Chen YP, Evans JD, Murphy C, Gutell R, Zuker M, Gundensen-Rindal D, Pettis JS (2009) Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. J Eukaryot Microbiol 56:142–147PubMedCrossRefGoogle Scholar
  10. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P-L, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287PubMedCrossRefGoogle Scholar
  11. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230PubMedCrossRefGoogle Scholar
  12. Fantham HB, Porter A (1914) The morphology, biology and economic importance of Nosema bombi, N. sp., parasitic in various humble bees (Bombus spp.). Ann Trop Med Parasit 8:623–638Google Scholar
  13. Fayer R, Santín M, Trout JM (2003) First detection of microsporidia in dairy calves in North America. Parasitol Res 90:383–386PubMedCrossRefGoogle Scholar
  14. Forsgren E, Fries I (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet Parasitol 170:212–217PubMedCrossRefGoogle Scholar
  15. Fries I, de Ruijter A, Paxton RJ, da Silva AJ, Slemenda SB, Pieniazek NJ (2001) Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a note on its sites of infection in Bombus terrestris (Hymenoptera: Apoidea). J Apicult Res 40:91–96Google Scholar
  16. Fries I, Feng F, Da Silva A, Slemeda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecularcharacterization of a microsporidian parasite of the Asian honeybee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365CrossRefGoogle Scholar
  17. Gatehouse HS, Malone LA (1998) The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. J Invertebr Pathol 71:97–105PubMedCrossRefGoogle Scholar
  18. Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373PubMedCrossRefGoogle Scholar
  19. Giersch T, Berg T, Galea F, Hornitzky M (2009) Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia. Apidologie 40:117–123CrossRefGoogle Scholar
  20. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208PubMedCrossRefGoogle Scholar
  21. Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95PubMedCrossRefGoogle Scholar
  22. Higes M, Martín-Hernández R, Martínez-Salvador A, Garrido-Bailón E, González-Porto AV, Meana A, Bernal JL, del Nozal MJ, Berna J (2010) A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ Microbiol Rep 2:243–250CrossRefGoogle Scholar
  23. Hodgkin J, Partridge FA (2008) Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol 6(12):e1000005CrossRefGoogle Scholar
  24. Kahler AM, Thurston-Enriquez JA (2007) Human pathogenic microsporidia detection in agricultural samples: method development and assessment. Parasitol Res 100:529–538PubMedCrossRefGoogle Scholar
  25. Klee J, Tay WT, Paxton RJ (2006) Specific and sensitive detection of Nosema bombi (Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA gene sequences. J Invertebr Pathol 91:98–104PubMedCrossRefGoogle Scholar
  26. Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh CX, Puerta F, Ruz JM, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10PubMedCrossRefGoogle Scholar
  27. Martin-Hernández R, Meana A, Prieto L, Salvador AM, Garrido-Bailón E, Higes M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microb 73:6331–6338CrossRefGoogle Scholar
  28. Otti O, Schmid-Hempel P (2007) Nosema bombi: a pollinator parasite with detrimental fitness effects. J Invertebr Pathol 96:118–124PubMedCrossRefGoogle Scholar
  29. Paxton RJ, Klee J, Korpela S, Fries I (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565CrossRefGoogle Scholar
  30. Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich AH, Lange C, Higes M (2009) South American native bumblebees (Hymenoptera:Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ Microbiol Rep 1:131–135CrossRefGoogle Scholar
  31. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353PubMedCrossRefGoogle Scholar
  32. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Methods in molecular biology, Volume 132: Bioinformatics Methods and Protocols, ed. Misener S, Krawetz SA, Totowa, NJ Humana Press; pp. 365–386Google Scholar
  33. Sagastume S, del Águila C, Martín-Hernández R, Higes M, Henriques-Gil N (2010) Polymorphism and recombination for rDNA in the putatively asexual microsporidian Nosema ceranae, a pathogen of honeybees. Environ Microbiol 13:84–95CrossRefGoogle Scholar
  34. Shykoff J, Schmid-Hempel P (1991) Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22:117–125CrossRefGoogle Scholar
  35. Stevanovic J, Stanimirovic Z, Genersch E, Kovacevic SR, Ljubenkovic J, Radakovic M, Aleksic N (2010) Dominance of Nosema ceranae in honey bees in the Balkan countries in the absence of symptoms of colony collapse disorder. Apidologie 42:49–58CrossRefGoogle Scholar
  36. Tay WT, O’Mahony EM, Paxton RJ (2005) Complete rRNA gene sequences reveal that the microsporidium Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites. J Eukaryot Microbiol 52:505–513PubMedCrossRefGoogle Scholar
  37. Tounou AK, Kooyman C, Douro-Kpindou OK, Gumedzoe YM, Poehlingn HM (2011) Laboratory assessment of the potential of Paranosema locustae to control immature stages of Schistocerca gregaria and Oedaleus senegalensis and vertical transmission of the pathogen in host populations. Biocontrol Sci Techn 21:605–617CrossRefGoogle Scholar
  38. Valencakova A, Balent P, Ravaszova P, Horak A, Obornik M, Halanova M, Malcekova B, Novotny F, Goldova M (2011) Molecular identification and genotyping of microsporidia in selected hosts. Parasitol Res. doi: 10.1007/s00436-011-2543-9
  39. vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4(8):e6481PubMedCrossRefGoogle Scholar
  40. Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451CrossRefGoogle Scholar
  41. Webster TC, Pomper KW, Hunt G, Thacker EM, Jones SC (2004) Nosema apis infection in worker and queen Apis mellifera. Apidologie 5:49–54CrossRefGoogle Scholar
  42. Zander E (1909) Tierische Parasiten als Krankenheitserreger bei der Biene. Münchener Bienenzeitung 31:196–204Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Silvio Erler
    • 1
    Email author
  • Stefanie Lommatzsch
    • 1
  • H. Michael G. Lattorff
    • 1
  1. 1.Institut für Biologie, Molekulare ÖkologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations