Parasitology Research

, Volume 110, Issue 2, pp 901–911

Liver response of rabbits to Eimeria coecicola infections

  • Saleh Al-Quraishy
  • Mahmoud S. Metwaly
  • Mohamed A. Dkhil
  • Abdel-Azeem S. Abdel-Baki
  • Frank Wunderlich
Original Paper


Intestinal coccidiosis of rabbits induced by E. coecicola causes enormous economic losses in rabbit farms. Here, we investigate the effect of E. coecicola on the liver of the rabbit Oryctolagus cuniculus. On day 7 p.i., fecal expulsion of E. coecicola oocysts is maximal and rabbits have lost approximately 25% of their weight. The liver, though not targeted by parasites, exhibits several signs of moderate inflammations, i.e., inflammatory cellular infiltrations around the central vein, dilatated blood sinusoids, increase in vacuolated hepatocytes, hypertrophic Kupffer cells, and lipid peroxidation as well as decreases in catalase and superoxide dismutase activities. Liver injuries are also indicated by an increase in blood plasma, by an increase in liver enzymes such as alanine transaminase, aspartate transaminase, alkaline phosphatase, and gamma glutamyl transferase, and a decrease in total protein and albumin. Circulating neutrophils have increased from 61% on day 0 p.i. to 71.3% on day 7 p.i., while lymphocytes are decreased from 37% to 26%. Agilent two-color oligo microarray technology, in combination with quantitative PCR, reveals that the expressions of 56 genes are upregulated and that of 22 genes are downregulated in the liver. The genes are largely involved in metabolism, calcium homeostasis, transport, and diverse signaling processes in the liver. In addition, numerous genes encoding for different regions of T-cell receptor as well as IgM, IgG, and IgA antibodies are both up- and downregulated in the liver by E. coecicola infections. The latter data suggest that the liver is not only ‘passively’ inflamed by intestinal infections with E. coecicola but rather is actively involved in the host defense against the intestinal Eimeria parasites.


  1. Aarthi S, Dhinakar Raj G, Raman M, Gomathinayagam S, Kumanan K (2010) Molecular prevalence and preponderance of Eimeria spp. among chickens in Tamil Nadu, India. Parasitol Res 107:1013–1017PubMedCrossRefGoogle Scholar
  2. Aebi ΗU (ed) (1984) Catalase. In: Methods in enzymatic analysis. Academic, New York, pp 276–86Google Scholar
  3. Al-Mathal EM (2008) Hepatic coccidiosis of the domestic rabbit Oryctolagus cuniculus domesticus L. in Saudi Arabia. World J Zool 3:30–35Google Scholar
  4. Baker DG (2007) In: Flynn’s parasitology of laboratory animals, 2nd edn. Blackwell, Ames, p 840Google Scholar
  5. Bergmeyer HU (1985) Approved recommendation on IFCC method for the measurement of catalytic concentration of enzymes, part 3. IFCC method for alanine amino transferase. Clin Chem Clin Biochem J 24:481–495Google Scholar
  6. Bhat TK, Jithendran KP (1995) Eimeria magna: the effect of varying inoculum size on the course of infection in Angora rabbits. World Rabbit Sci J 3:163–166Google Scholar
  7. Bhat TK, Jithendran KP, Kurade NP (1996) Rabbit coccidiosis and its control: a review. World Rabbit Sci J 4:37–41Google Scholar
  8. Crispe IN (2009) The liver as lymphoid organ. Ann Rev Immunol 27:147–163CrossRefGoogle Scholar
  9. DePablos LM, dos Santos MF, Montero E, Garcia-Granados A, Parra A, Osuna A (2010) Anticoccidial activity of maslinic acid against infection with Eimeria tenella in chickens. Parasitol Res 107:601–604CrossRefGoogle Scholar
  10. Dkhil M, Addel-Baki A, Delic D, Wunderlich F, Sies H, Al-Quraishy S (2011a) Eimeria papillata: upregulation of specific miRNA-species in the mouse jejunum. Exp Parasitol 127:581–586PubMedCrossRefGoogle Scholar
  11. Dkhil MA, Abdel-Baki AS, Wunderlich F, Sies H, Al-Quraishi S (2011b) Anticoccidial and antiinflammatory activity of garlic in murine Eimeria papillata infections. Vet Parasitol 175:66–72PubMedCrossRefGoogle Scholar
  12. El-Shahawi GA, El-Fayomi HM, Abdel-Haleem HM (2011) Coccidiosis of domestic rabbit (Oryctolagus cuniculus) in Egypt: light microscopic study. Parasitol Res, in pressGoogle Scholar
  13. Epstein E, Kichle FL, Artiss JD (1986) The clinical uses of alkaline phosphatase enzyme. Clin Lab Med 6:491–505PubMedGoogle Scholar
  14. Fossati P, Principe L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28:2077–2080PubMedGoogle Scholar
  15. Georgi JR (1980) Parasitology for veterinarians, 3rd edn. Saunders, Philadelphia, p 179Google Scholar
  16. Häussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F (2004) Molecular aspects of medicine: from experimental to clinical hepatology. Mol Asp Med 25:221–360CrossRefGoogle Scholar
  17. Hein B, Laemmler G (1978) Alteration of enzyme activities in serum of Eimeria stiedae infected rabbits. Parasitol Res 57:199–211Google Scholar
  18. Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube JJ, Scott DK, O’Doherty RM (2010) Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59:347–357PubMedCrossRefGoogle Scholar
  19. Jithendran KP, Bhat KP (1996) Subclinical coccidiosis in Angora rabbits—a field survey in Himachal Pradesh (India). World Rabbit Sci 4:29–32Google Scholar
  20. Knight JA (1972) Chemical basis of sulfophospho-vanillin reaction in estimating total lipids. Clin Chem 18:199–204PubMedGoogle Scholar
  21. López-Bernad F, del Cacho E, Gallego M, Quílez J, Sánchez-Acedo C (1998) Immunohistochemical identification of the cells parasitized by second-generation schizonts of Eimeria tenella. Parasitol Res 84:132–135PubMedCrossRefGoogle Scholar
  22. Mehlhorn H (ed) (2008) Encyclopedic reference of parasitology, vol 1, 3rd edn. Springer, BerlinGoogle Scholar
  23. Mehlhorn H, Ortmann-Falkenstein G, Haberkorn A (1984) The effects of sym. triazinones on developmental stages of Eimeria tenella, E. maxima and E. acervulina: a light and electron microscopical study. Parasitol Res 70:173–182Google Scholar
  24. Nagura H, Sumi Y (1988) Immunological functions of the gut, role of the mucosal immune system. Toxicol Pathol 16:154–164PubMedCrossRefGoogle Scholar
  25. Nishikimi M, Rao A, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazinemethosulphate and molecular oxygen. Biochem Biophys Res Commun 46:849–854PubMedCrossRefGoogle Scholar
  26. Pakandl M (1989) Life cycle of Eimeria coecicola Cheissin, 1947. Folia Parasitol (Praha) 36:97–105Google Scholar
  27. Pakandl M (2009) Coccidia of rabbit: a review. Folia Parasitol (Praha) 56:153–166Google Scholar
  28. Pakandl M, Coudret P, Licois D (1993) Migration of sporozoites and merogony of Eimeria coecicola in gut-associated lymphoid tissue. Parasitol Res 79:593–598PubMedCrossRefGoogle Scholar
  29. Pakandl M, Gaca A, Drout-Viard F, Coudret P (1996) Eimeria coecicola Cheissin, 1947: endogenous development in gut-associated lymphoid tissue. Parasitol Res 82:347–351PubMedCrossRefGoogle Scholar
  30. Pakandl M, Sewald B, Drouet-Viard F (2006) Invasion of the intestinal tract by sporozoites of Eimeria coecicola and Eimeria intestinalis in naive and immune rabbits. Parasitol Res 98:310–316PubMedCrossRefGoogle Scholar
  31. Peeters BE, Charlier G, Antoine O, Mammericlex M (1984) Clinical and pathological changes after Eimeria intestinalis infection in rabbits. J Vet Med 31:9–24Google Scholar
  32. Renaux S, Viard FD, Chanteloup NK, Vern Y, Kerboeuf D, Pakandl M, Coudret P (2001) Tissues and cells involved in the invasion of rabbit intestinal tract by sporozoites of Eimeria coecicola. Parasitol Res 87:98–106PubMedCrossRefGoogle Scholar
  33. San Martín-Núñez BV, Ordóñez-Escudero D, Alunda JM (1988) Preventive treatment of rabbit coccidiosis with alpha-difluoromethylornithine. Vet Parasitol 30:1–10PubMedCrossRefGoogle Scholar
  34. Satoh K (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chem Acta 90:37–43CrossRefGoogle Scholar
  35. Schito ML, Barta JR, Chobotar B (1996) Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. J Parasitol 82:255–262PubMedCrossRefGoogle Scholar
  36. Seki S, Habu Y, Kawamura T, Takeda K, Dobashi H, Ohkawa T, Hiraide H (2000) The liver as crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cell in T helper 1 immune responses. Immunol Rev 174:35–46PubMedCrossRefGoogle Scholar
  37. Szasz G (1969) A kinetic photometric method for serum gamma glutamyltranspeptidase. Clin Chem 15:124–136PubMedGoogle Scholar
  38. Taylor MA, Coop RL, Wall RL (2007) Veterinary parasitology, 3rd edn. Blackwell, Ames, p 901Google Scholar
  39. Toulah FH, AL-Rawi MM (2007) Efficacy of garlic extract on hepatic coccidiosis in infected rabbits (Oryctolagus cuniculus): histological and biochemical studies. J Egypt Soc Parasitol 37:957–969PubMedGoogle Scholar
  40. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–28Google Scholar
  41. Vitovec J, Pakandl M (1989) The pathogenicity of rabbit coccidium Eimeria coecicola Cheissin, 1947. Folia Parasitol 36:289–293PubMedGoogle Scholar
  42. Walsh RL (1983) A comparison of dye-binding methods for albumin determination; the effects of abnormal sera, reaction times, acute phase reactants and albumin standards. Clin Biochem 16:178–181PubMedCrossRefGoogle Scholar
  43. Walters MA, Gerarde HW (1970) An ultramicro method for the determination of conjugated and total bilirubin in serum or plasma. Microchemistry 15:231–243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Saleh Al-Quraishy
    • 1
  • Mahmoud S. Metwaly
    • 1
  • Mohamed A. Dkhil
    • 1
    • 2
  • Abdel-Azeem S. Abdel-Baki
    • 1
    • 3
  • Frank Wunderlich
    • 1
  1. 1.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Zoology and Entomology, Faculty of ScienceHelwan UniversityHelwanEgypt
  3. 3.Department of Zoology, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations