Parasitology Research

, Volume 110, Issue 2, pp 859–864

Genetic variation and widespread dispersal of Nosema ceranae in Apis mellifera apiaries from Argentina

  • Sandra Karina Medici
  • Edgardo Gabriel Sarlo
  • Martín Pablo Porrini
  • Martín Braunstein
  • Martín Javier Eguaras
Original Paper

Abstract

Using molecular techniques, we documented the presence of Nosema ceranae in honeybees (Apis mellífera) from Argentina. Samples were collected from A. mellifera colonies in 38 districts of Buenos Aires province, Argentina. Molecular characterization was achieved with a multiplex PCR-based method, which allows parallel diagnosis of N. ceranae and N. osema apis. N. ceranae was identified in all the samples analyzed. Moreover, coinfections with N. apis were detected in Balcarce and Maipú districts. We identified three rRNA sequence variants of N. ceranae, which may represent diverse sources of bee importation. The results suggest that N. ceranae is widely distributed in Argentina and that the genetic variation observed between the different isolates could be related with the difference in the symptomatology found previously by our work group. Our results highlight the need to re-assess the health protocols currently in force so that they recognize N. ceranae as the main causal agent of Nosemosis in this country.

References

  1. Anisimova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55:539–552PubMedCrossRefGoogle Scholar
  2. Benson D, Karsch-Mzrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:D34–D38Google Scholar
  3. Burgher-MacLellan KL, Williams GR, Shutler D, MacKenzie K, Rogers REL (2010) Optimization of duplex real-time PCR with melting-curve analysis for detecting the microsporidian parasites Nosema apis and Nosema ceranae in Apis mellifera. Can Entomol 142:271–283CrossRefGoogle Scholar
  4. Cole R (1970) The application of the “triangulation” method for the purification of Nosema spores from insect tissues. J Invertebr Pathol 15:193–195CrossRefGoogle Scholar
  5. De Graaf D, Masschelein G, Vandergeynst F, De Brabander H, Jacobs F (1993) In vitro germination of Nosema apis (Microspora: Nosematidae) spores and its effect on their αα-Trehalose/d-Glucose ratio. J Invertebr Pathol 62:220–225CrossRefGoogle Scholar
  6. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J, Guindon S, Lefort V, Lescot M, Claverie J, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:w465–w469PubMedCrossRefGoogle Scholar
  7. Elias I, Lagergren J (2007) Fast computation of distance estimators. BMC Bioinforma 13:89CrossRefGoogle Scholar
  8. Faucon J, Mathieu I, Ribiére A, Drajnudel P, Zeggane S, Aurieres C, Aubert M (2002) Honey bee winter mortality in France in 1999 and 2000. Bee World 83:14–23Google Scholar
  9. Felsenstein J (1989) Phylip—phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  10. Fries I (2010) Nosema cerane in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79PubMedCrossRefGoogle Scholar
  11. Fries I, Feng F, Da Silva A, Slemenda S, Pieniazek J (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365CrossRefGoogle Scholar
  12. Fries I, Martín R, Meana A, García-Palencia P, Higes M (2006) Natural infections of Nosema ceranae in European honey bees. J Apic Res 45:230–233CrossRefGoogle Scholar
  13. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695PubMedGoogle Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  15. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Sym Ser 41:95–98Google Scholar
  16. Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95PubMedCrossRefGoogle Scholar
  17. Higes M, García-Palencia P, Martín-Hernández R, Meana A (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J Invertebr Pathol 94:211–217PubMedCrossRefGoogle Scholar
  18. Huang W, Jiang J, Chen Y (2005) Complete rRNA sequence of the Nosema ceranae from honeybee (Apis mellifera). Dissertation, National Taiwan University, TaipeiGoogle Scholar
  19. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinforma 17:754–755CrossRefGoogle Scholar
  20. Klee J, Besana A, Genersch E, Gisder S, Nanetti A, Tam D, Chinh T, Puerta F, Ruz J, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton R (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10PubMedCrossRefGoogle Scholar
  21. Martín-Hernández R, Meana A, Prieto I, Martínez Salvador A, Garrido-Bailón E, Higes M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73:6331–6338PubMedCrossRefGoogle Scholar
  22. O’Mahony EM, Tay WT, Paxton RJ (2007) Multiple rRNA variants in a single spore of the microsporidian Nosema bombi. J Eukaryot Microbiol 54:103–109PubMedCrossRefGoogle Scholar
  23. Page R (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  24. Poirot O, O’Toole E, Notredame C (2003) Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res 31:3503–3506PubMedCrossRefGoogle Scholar
  25. Sarlo EG, Medici SK, Porrini MP, Eguaras MJ (2008) Presencia y distribución de Nosema ceranae en la región Sudeste de la provincia de Buenos Aires. 2do Congreso Argentino de ApiculturaGoogle Scholar
  26. Shafer AB, Williams GR, Shutler D, Rogers RE, Stewart DT (2009) Cophylogeny of Nosema (Microsporidia: Nosematidae) and bees (Hymenoptera: Apidae) suggests both cospeciation and a host switch. J Parasitol 95:198–203PubMedCrossRefGoogle Scholar
  27. Tay W, O’Mahoney E, Paxton R (2005) Complete rRNA gene sequences reveal that the microsporidian Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites. J Eukaryot Microbiol 52:505–513PubMedCrossRefGoogle Scholar
  28. Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414PubMedCrossRefGoogle Scholar
  29. Weiss IM, Vossbrinck CR (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia. In: Wittner M, Weiss IM (eds) The microsporidia and microsporidiosis. ASM Press, Washington, DC, pp 129–171Google Scholar
  30. Williams GR, Shafer A, Rogers R, Shutler D, Stewart D (2008) First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and Central USA. J Invertebr Pathol 97:189–192PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sandra Karina Medici
    • 1
    • 3
    • 4
  • Edgardo Gabriel Sarlo
    • 1
  • Martín Pablo Porrini
    • 1
  • Martín Braunstein
    • 2
  • Martín Javier Eguaras
    • 1
    • 4
  1. 1.Laboratorio de ArtrópodosUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Apícola Malka S.R.L.La PlataArgentina
  3. 3.Fares Taie Instituto de AnálisisMar del PlataArgentina
  4. 4.Comisión Nacional de Investigaciones Científicas (CONICET)Mar del PlataArgentina

Personalised recommendations