Advertisement

Parasitology Research

, Volume 110, Issue 2, pp 833–841 | Cite as

Genetic differentiation of cercariae infrapopulations of the avian schistosome Trichobilharzia szidati based on RAPD markers and mitochondrial cox1 gene

  • Anna Korsunenko
  • Galina Chrisanfova
  • Anton Lopatkin
  • Sergey A. Beer
  • Mikhail Voronin
  • Alexey P. Ryskov
  • Seraphima K. Semyenova
Original Paper

Abstract

Avian schistosome Trichobilharzia szidati is a member of the largest genus within the family Schistosomatidae (Trematoda). Population genetic structure of Trichobilharzia spp. schistosomes, causative agents of cercarial dermatitis in humans, has not been studied yet. The knowledge of the genetic structure of trichobilharzian populations is essential for understanding the host–parasite coevolutionary dynamics and epidemiology strategies. Here we examined genetic diversity in three geographically isolated local populations of T. szidati cercariae inhabiting Russia based on nuclear (randomly amplified polymorphic DNA, RAPD) and mt (cox1) markers. We analyzed T. szidati cercariae shed from seven naturally infected snails of Lymnaea stagnalis. Using three random primers, we demonstrated genetic variation among populations, thus posing genetic structure across geographic sites. Moreover, T. szidati cercariae have been genetically structured among hosts (infrapopulations). Molecular variance analysis was performed to test the significance of genetic differentiation within and between local populations. Of total parasitic diversity, 18.8% was partitioned between populations, whereas the higher contribution (48.9%) corresponds to the differences among individual cercariae within infrapopulations. In contrast to RAPD markers, a 1,125-bp fragment of cox1 mt gene failed to provide any significant within-species structure. The lack of geographic structuring was detected using unique haplotypes which were determined in the current work for Moscow and Western Siberian local populations as well as obtained previously for European isolates (Czech Republic and Germany). All T. szidati/Trichobilharzia ocellata haplotypes were found to be mixed across their geographical origin.

Keywords

Definitive Host Snail Infection Cercarial Dermatitis Daughter Sporocyst Cox1 Haplotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Dr. Natalya Yurlova and Dr. Elena Serbina for their help in collecting of samples. This work received financial support from the Russian Foundation for Basic Research (09-04-01611, 08-04-12204), RFC (02.740.11.0088), and President RF Program of Leading Scientific Schools (S. S. -2107.2008.4).

References

  1. Attwood SW, Fatih FA, Upatham ES (2008) DNA-sequence variation among Schistosoma mekongi populations and related taxa; phylogeography and the current distribution of Asian schistosomiasis. PLoS Negl Trop Dis 2(3):e200. doi: 10.1371/journal.pntd.0000200 PubMedCrossRefGoogle Scholar
  2. Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Bayne CJ, Grevelding CG (2003) Cloning of Schistosoma mansoni sporocysts in vitro and detection of genetic heterogeneity among individuals within clones. J Parasitol 89(5):1056–1060. doi: 10.1645/GE-3186RN PubMedCrossRefGoogle Scholar
  4. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583PubMedCrossRefGoogle Scholar
  5. Chrisanfova GG, Lopatkin AA, Mishchenkov VA, Kheidorova EE, Dorozhenkova TE, Zhukova TV, Ryskov AP, Semyenova SK (2009) Genetic variability of bird schistosomes (class Trematoda, family Schistosomatidae) of Naroch Lake: identification of a new species in the Trichobilharzia ocellata group. Dokl Biochem Biophys 428:268–272PubMedCrossRefGoogle Scholar
  6. Chrisanfova G, Lopatkin A, Shestak A, Mishchenkov V, Zhukova T, Akimova L, Semyenova S (2011) Polymorphism of the cox1 mtDNA gene from cercarial isolates of the avian schistosome Bilharziella polonica (Trematoda: Schistosomatidae) from Belarussian lakes. Russ J Genet 47(5):603–609. doi: 10.1134/s1022795411050097 CrossRefGoogle Scholar
  7. Dabo A, Durand P, Morand S, Diakite M, Langand J, Imbert-Establet D, Doumbo O, Jourdane J (1997) Distribution and genetic diversity of Schistosoma haematobium within its bulinid intermediate hosts in Mali. Acta Trop 66(1):15–26. doi: S0001-706X(97)00670-0 PubMedCrossRefGoogle Scholar
  8. Davies CM, Webster JP, Kruger O, Munatsi A, Ndamba J, Woolhouse ME (1999) Host-parasite population genetics: a cross-sectional comparison of Bulinus globosus and Schistosoma haematobium. Parasitology 119(Pt 3):295–302PubMedCrossRefGoogle Scholar
  9. Dvořák J, Vanáčová Š, Hampl V, Flegr J, Horák P (2002) Comparison of European Trichobilharzia species based on ITS1 and ITS2 sequences. Parasitology 124(Pt 3):307–313PubMedGoogle Scholar
  10. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  11. Gower CM, Shrivastava J, Lamberton PH, Rollinson D, Webster BL, Emery A, Kabatereine NB, Webster JP (2007) Development and application of an ethically and epidemiologically advantageous assay for the multi-locus microsatellite analysis of Schistosoma mansoni. Parasitology 134(Pt 4):523–536. doi: 10.1017/S0031182006001685 PubMedCrossRefGoogle Scholar
  12. Grevelding CG (1999) Genomic instability in Schistosoma mansoni. Mol Biochem Parasitol 101(1–2):207–216. doi: S0166-6851(99)00078-X PubMedCrossRefGoogle Scholar
  13. Horák P, Kolářová L (2011) Snails, waterfowl and cercarial dermatitis. Freshw Biol 56(4):779–790. doi: 10.1111/j.1365-2427.2010.02545.x CrossRefGoogle Scholar
  14. Horák P, Kolářová L, Adema CM (2002) Biology of the schistosome genus Trichobilharzia. Adv Parasitol 52:155–233PubMedCrossRefGoogle Scholar
  15. Jarne P, Theron A (2001) Genetic structure in natural populations of flukes and snails: a practical approach and review. Parasitology 123(Suppl):S27–S40PubMedGoogle Scholar
  16. Jouet D, Skirnisson K, Kolářová L, Ferte H (2010) Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infect Genet Evol 10(8):1218–1227. doi: 10.1016/j.meegid.2010.08.001 PubMedCrossRefGoogle Scholar
  17. Khalturin KV, Mikhailova NA, Granovich AI (2000) Genetic heterogeneity in natural populations of Microphallus piriformes and M. pygmaeus parthenites (Trematoda: Microphallidae). Parazitologiia 34(6):486–501PubMedGoogle Scholar
  18. Kock S (2001) Investigations of intermediate host specificity help to elucidate the taxonomic status of Trichobilharzia ocellata (Digenea: Schistosomatidae). Parasitology 123(Pt 1):67–70PubMedGoogle Scholar
  19. Korsunenko AV, Tiutin AV, Semenova SK (2009) Clonal and population RAPD variation of cercariae obtained from Bucephalus polymorphus sporocysts (Trematoda: Bucephalidae). Genetika 45(1):73–80PubMedGoogle Scholar
  20. Kulikova I, Drovetski S, Gibson D, Harrigan R, Rohwer S, Sorenson M, Winker K, Zhuravlev Y, McCracken K (2005) Phylogeography of the Mallard (Anas platyrhynchos): hybridization, dispersal and lineage sorting contribute to complex geographic structure. Anglais 122(3):949–965Google Scholar
  21. Lively CM (1989) Adaptation by a parasitic trematode to local populations of its snail. Evolution 43:1663–1671CrossRefGoogle Scholar
  22. Lockyer AE, Olson PD, Ostergaard P, Rollinson D, Johnston DA, Attwood SW, Southgate VR, Horák P, Snyder SD, Le TH, Agatsuma T, McManus DP, Carmichael AC, Naem S, Littlewood DT (2003) The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126(Pt 3):203–224PubMedCrossRefGoogle Scholar
  23. Lopatkin AA, Khrisanfova GG, Voronin MV, Zazornova OP, Beer SA, Semenova SK (2010) Polymorphism of the cox1 gene in bird schistosome cercaria isolates (Trematoda, Schistosomatidae) from ponds of Moscow and Moscow oblast. Genetika 46(7):981–989PubMedGoogle Scholar
  24. Morgan JA, Dejong RJ, Adeoye GO, Ansa ED, Barbosa CS, Bremond P, Cesari IM, Charbonnel N, Correa LR, Coulibaly G, D'Andrea PS, De Souza CP, Doenhoff MJ, File S, Idris MA, Incani RN, Jarne P, Karanja DM, Kazibwe F, Kpikpi J, Lwambo NJ, Mabaye A, Magalhaes LA, Makundi A, Mone H, Mouahid G, Muchemi GM, Mungai BN, Sene M, Southgate V, Tchuente LA, Theron A, Yousif F, Zanotti-Magalhaes EM, Mkoji GM, Loker ES (2005) Origin and diversification of the human parasite Schistosoma mansoni. Mol Ecol 14(12):3889–3902. doi: 10.1111/j.1365-294X.2005.02709.x PubMedCrossRefGoogle Scholar
  25. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76(10):5269–5273PubMedCrossRefGoogle Scholar
  26. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50(4):580–601PubMedCrossRefGoogle Scholar
  27. Rudolfová J, Hampl V, Bayssade-Dufour C, Lockyer AE, Littlewood DT, Horák P (2005) Validity reassessment of Trichobilharzia species using Lymnaea stagnalis as the intermediate host. Parasitol Res 95(2):79–89. doi: 10.1007/s00436-004-1262-x PubMedCrossRefGoogle Scholar
  28. Rudolfová J, Littlewood DT, Sitko J, Horák P (2007) Bird schistosomes of wildfowl in the Czech Republic and Poland. Folia Parasitol (Praha) 54(2):88–93Google Scholar
  29. Semenova SK, Khrisanfova GG, Filippova EK, Beer SA, Voronin MV, Ryskov AP (2005) Individual and population variation in cercariae of bird schistosomes of the Trichobilharzia ocellata species group as revealed with the polymerase chain reaction. Genetika 41(1):17–22PubMedGoogle Scholar
  30. Semyenova SK, Khrisanfova GG, Korsunenko AV, Voronin MV, Beer SV, Vodyanitskaya SV, Serbina EA, Yurlova NI, Ryskov AP (2007) Multilocus variation in cercariae, parthenogenetic progeny of different species of the class Trematoda. Dokl Biol Sci 414:235–238PubMedCrossRefGoogle Scholar
  31. Sire C, Langand J, Barral V, Theron A (2001) Parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) genetic diversity: population structure in a fragmented landscape. Parasitology 122(Pt 5):545–554PubMedGoogle Scholar
  32. Stothard JR, Webster BL, Weber T, Nyakaana S, Webster JP, Kazibwe F, Kabatereine NB, Rollinson D (2009) Molecular epidemiology of Schistosoma mansoni in Uganda: DNA barcoding reveals substantial genetic diversity within Lake Albert and Lake Victoria populations. Parasitology 136(13):1813–1824. doi: 10.1017/S003118200999031X PubMedCrossRefGoogle Scholar
  33. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  34. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10(5):569–570PubMedGoogle Scholar
  35. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4):506–513PubMedGoogle Scholar
  36. Williamson VM, Caswell-Chen EP, Westerdahl BB, Wu FF, Caryl G (1997) A PCR assay to identify and distinguish single juveniles of Meloidogyne hapla and M. chitwoodi. J Nematol 29(1):9–15PubMedGoogle Scholar
  37. Yeh FC, Yang R, Boyle T (1999) POPGENE. Version 1.31 edn. University of Alberta, EdmontonGoogle Scholar
  38. Yin M, Hu W, Mo X, Wang S, Brindley PJ, McManus DP, Davis GM, Feng Z, Blair D (2008) Multiple near-identical genotypes of Schistosoma japonicum can occur in snails and have implications for population-genetic analyses. Int J Parasitol 38(14):1681–1691. doi: 10.1016/j.ijpara.2008.05.015 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anna Korsunenko
    • 1
    • 2
  • Galina Chrisanfova
    • 1
  • Anton Lopatkin
    • 1
  • Sergey A. Beer
    • 2
  • Mikhail Voronin
    • 2
  • Alexey P. Ryskov
    • 1
  • Seraphima K. Semyenova
    • 1
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Center of Parasitology, A.N. Severtsov Institute of Problems of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations