Advertisement

Parasitology Research

, Volume 110, Issue 2, pp 609–616 | Cite as

Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae

  • Thiago Henrique Napoleão
  • Emmanuel Viana Pontual
  • Thâmarah de Albuquerque Lima
  • Nataly Diniz de Lima Santos
  • Roberto Araújo Sá
  • Luana Cassandra Breitenbach Barroso Coelho
  • Daniela Maria do Amaral Ferraz Navarro
  • Patrícia Maria Guedes Paiva
Original Paper

Abstract

Aedes aegypti transmits the viruses that cause yellow and dengue fevers. Vector control is essential, since a vaccine for dengue has not as yet been made available. This work reports on the larvicidal activity of Myracrodruon urundeuva leaf lectin (MuLL) against A. aegypti fourth-stage larvae (L4). Also, the resistance of MuLL to digestion by L4 gut proteases and the effects of MuLL on protease, trypsin-like and α-amylase activities from L4 gut were evaluated to determine if lectin remains active in A. aegypti gut and if insect enzyme activities can be modulated by MuLL. MuLL promoted mortality of L4 with LC50 of 0.202 mg/ml. Haemagglutinating activity of MuLL was detected even after incubation for 96 h with L4 gut preparation containing protease activity. MuLL affected the activity of gut enzymes, inhibiting protease and trypsin activities and stimulating α-amylase activity. The results suggest that MuLL may become a new biodegradable larvicidal agent for dengue control. Larvicidal activity of MuLL may be linked to its resistance to proteolysis by larval enzymes and interference in the activity of digestive larval enzymes.

Keywords

Leaf Extract Dengue Fever Larvicidal Activity Trypsin Activity Peritrophic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by research grants and fellowships (LCBBC, PMGP) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and financial support from the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We thank Maria Barbosa Reis da Silva for technical assistance and Felix Nonnenmacher for English editing.

References

  1. Aiub CAF, Coelho ECA, Sodré E, Pinto LFR, Felzenszwalb I (2002) Genotoxic evaluation of the organophosphorous pesticide temephos. Genet Mol Res 1:159–166PubMedGoogle Scholar
  2. Applebaum SW, Jankovic M, Birk Y (1961) Studies on the midgut amylase activity of Tenebrio molitor L. larvae. J Insect Physiol 7:100–108CrossRefGoogle Scholar
  3. Araújo AP, Melo-Santos MAV, Carlos SO, Rios EMMM, Regis L (2007) Evaluation of an experimental product based on Bacillus thuringiensis sorovar. israelensis against Aedes aegypti larvae (Diptera:Culicidae). Biol Control 41:339–347CrossRefGoogle Scholar
  4. Autran ES, Neves IA, da Silva CSB, Santos GKN, da Câmara CAG, Navarro DMAF (2009) Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol 100:2284–2288PubMedCrossRefGoogle Scholar
  5. Azeez A, Sane AP, Bhatnagar D, Nath P (2007) Enhanced expression of serine proteases during floral senescence in Gladiolus. Phytochemistry 68:1352–1357PubMedCrossRefGoogle Scholar
  6. Babu SR, Subrahmanyam B (2010) Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth and development of Helicoverpa armigera (Hübner). Pest Biochem Physiol 98:349–358CrossRefGoogle Scholar
  7. Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223–229PubMedCrossRefGoogle Scholar
  8. Bernfeld P (1955) Amylases, α and β. Methods Enzymol 1:149–158CrossRefGoogle Scholar
  9. Bhattacharyya A, Leighton SM, Babu CR (2007) Bioinsecticidal activity of Archidendron ellipticum trypsin inhibitor on growth and serine digestive enzymes during larval development of Spodoptera litura. Comp Biochem Physiol C 145:669–677Google Scholar
  10. Bing DH, Weyand JG, Stavinsky AB (1967) Hemagglutination with aldehyde-fixed erythrocytes for assay of antigens and antibodies. Proc Soc Exp Biol Med 124:1166–1170PubMedGoogle Scholar
  11. Borovsk D, Meola SM (2004) Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Arch Insect Biochem Phys 55:24–139Google Scholar
  12. Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potential as bioinsecticides. Toxicon 40:1515–1539PubMedCrossRefGoogle Scholar
  13. Coelho MB, Marangoni S, Macedo MLR (2007) Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera: Pyralidae). Comp Biochem Physiol C 146:406–414Google Scholar
  14. Coelho JS, Santos NDL, Napoleão TH, Gomes FS, Ferreira RS, Zingali RB, Coelho LCBB, Leite SP, Navarro DMAF, Paiva PMG (2009) Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti. Chemosphere 77:934–938PubMedCrossRefGoogle Scholar
  15. Correia MTS, Coelho LCBB, Paiva PMG (2008) Lectins, carbohydrate recognition molecules: are they toxic? In: Siddique YH (ed) Recent trends in toxicology, vol. 37. Transworld Research Network, Kerala, pp 47–59Google Scholar
  16. Czapla TH, Lang BA (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 83:2480–2485Google Scholar
  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  18. Eisemann CH, Donaldson RA, Pearson RD, Cadogan LC, Vacuolo T, Tellman RL (1994) Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomol Exp Appl 72:1–11CrossRefGoogle Scholar
  19. Fitches E, Philip J, Hinchliffe G, Vercruysse L, Chougule N, Gatehouse JA (2008) An evaluation of garlic lectin as an alternative carrier domain for insecticidal fusion proteins. Insect Sci 15:483–495CrossRefGoogle Scholar
  20. García-Carreño FL, Dimes LE, Haard NF (1993) Substrate gel electrophoresis for composition and molecular weight of proteinases and proteinaceous proteinase inhibitors. Anal Biochem 214:65–69PubMedCrossRefGoogle Scholar
  21. Kakade ML, Simons N, Liener IE (1969) An evaluation of natural vs. synthetic substrates for measuring the antitryptic activity of soybean samples. Cereal Chem 46:518–526Google Scholar
  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  23. Lagarda-Diaz I, Guzman-Partida AM, Urbano-Hernandez G, Ortega-Nieblas MM, Robles-Burgeño MR, Winzerling J, Vazquez-Moreno L (2009) Insecticidal action of PF2 lectin from Olneya tesota (Palo Fierro) against Zabrotes subfasciatus larvae and midgut glycoconjugate binding. J Agric Food Chem 57:689–694PubMedCrossRefGoogle Scholar
  24. Lam SK, Ng TB (2011) Lectins: production and practical applications. Appl Microbiol Biotechnol 89:45–55PubMedCrossRefGoogle Scholar
  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  26. Macedo MLR, Damico DCS, Freire MGM, Toyama MH, Marangoni S, Novello JC (2003) Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae). J Agric Food Chem 51:2980–2986PubMedCrossRefGoogle Scholar
  27. Macedo MLR, Castro MM, Freire MGM (2004) Mechanisms of the insecticidal action of TEL (Talisia esculenta lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae). Arch Insect Biochem Physiol 56:84–96PubMedCrossRefGoogle Scholar
  28. Macedo MLR, Freire MGM, Silva MBR, Coelho LCBB (2007) Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A 146:486–498CrossRefGoogle Scholar
  29. McGeachin RL, Willis TG, Roulston EF, Lang CA (1972) Variation in alpha-amylase during the life span of the mosquito. Comp Biochem Physiol B 43:185–191PubMedCrossRefGoogle Scholar
  30. Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomes TCS, Paiva MHS, Regis LN, Furtado AF, Magalhães T, Macoris MLG, Andrighetti MTM, Ayres CFJ (2010) Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop 113:180–189PubMedCrossRefGoogle Scholar
  31. Monath TP (2008) Treatment of yellow fever. Antiviral Res 78:116–124PubMedCrossRefGoogle Scholar
  32. Nanasahe PC, Doyle E, Fitches E, Gatehouse JA (2008) Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. J Insect Physiol 54:563–572CrossRefGoogle Scholar
  33. Napoleão TH, Gomes FS, Lima TA, Santos NDL, Sá RA, Albuquerque AC, Coelho LCBB, Paiva PMG (2011) Termiticidal activity of lectins from Myracrodruon urundeuva against Nasutitermes corniger and its mechanisms. Int Biodeter Biodegr 65:52–59CrossRefGoogle Scholar
  34. Navarro DMAF, Oliveira PES, Potting RJP, Brito AC, Fital SJF, Sant’Ana AEG (2003) The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae). J Appl Entomol 127:46–50CrossRefGoogle Scholar
  35. Oliveira CFR, Luz LA, Paiva PMG, Coelho LCBB, Marangoni S, Macedo MLR (2011) Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochem 46:498–504CrossRefGoogle Scholar
  36. Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP (2008) Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol 38:540–551PubMedCrossRefGoogle Scholar
  37. Rajkumar S, Jebanesan A (2008) Bioactivity of flavonoid compounds from Poncirus trifoliate L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 104:19–25PubMedCrossRefGoogle Scholar
  38. Sá RA, Napoleão TH, Santos NDL, Gomes FS, Albuquerque AC, Xavier HS, Coelho LCBB, Bieber LW, Paiva PMG (2008) Induction of mortality on Nasutitermes corniger (Isoptera, Termitidae) by Myracrodruon urundeuva heartwood lectin. Int Biodeter Biodegr 62:460–464CrossRefGoogle Scholar
  39. Sá RA, Argolo ACC, Napoleão TH, Gomes FS, Santos NDL, Melo CML, Albuquerque AC, Xavier HS, Coelho LCBB, Bieber LW, Paiva PMG (2009a) Antioxidant, Fusarium growth inhibition and Nasutitermes corniger repellent activities of secondary metabolites from Myracrodruon urundeuva heartwood. Int Biodeter Biodegr 63:470–477CrossRefGoogle Scholar
  40. Sá RA, Santos NDL, da Silva CSB, Napoleão TH, Gomes FS, Cavada BS, Coelho LCBB, Navarro DMAF, Bieber LW, Paiva PMG (2009b) Larvicidal activity of Myracrodruon urundeuva lectins on Aedes aegypti. Comp Biochem Physiol C 149:300–306Google Scholar
  41. Segel IH (1975) Enzyme kinetics: Behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley-Interscience, New York, 984Google Scholar
  42. Souza SMC, Aquino LCM, Milach AC Jr, Bandeira MAM, Nobre MEP, Viana GSB (2006) Antiinflammatory and antiulcer properties of tannins from Myracrodruon urundeuva Allemão (Anacardiaceae) in rodents. Phytother Res 21:220–225CrossRefGoogle Scholar
  43. Tauil PL (2002) Aspectos clínicos do controle do dengue no Brasil. Cad Saude Publica 18:867–871PubMedCrossRefGoogle Scholar
  44. Tellam RL, Wijffels G, Wiladsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101PubMedCrossRefGoogle Scholar
  45. Viana GSB, Bandeira MAM, Matos FJA (2003) Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemão. Phytomedicine 10:189–195PubMedCrossRefGoogle Scholar
  46. World Health Organization (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81.807, pp. 1–6Google Scholar
  47. World Health Organization (2009a) Yellow Fever. Fact sheet 100Google Scholar
  48. World Health Organization (2009b) Dengue and dengue haemorrhagic fever. Fact sheet 117Google Scholar
  49. Yang YJ, Davies DM (1971) Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin. J Insect Physiol 17:117–131PubMedCrossRefGoogle Scholar
  50. Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA, Narasimhan M, Bressan RA, Hasegawa PM, Murdock LL (1998) Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc Natl Acad Sci USA 95:15123–15128PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thiago Henrique Napoleão
    • 1
  • Emmanuel Viana Pontual
    • 1
  • Thâmarah de Albuquerque Lima
    • 1
  • Nataly Diniz de Lima Santos
    • 1
  • Roberto Araújo Sá
    • 2
  • Luana Cassandra Breitenbach Barroso Coelho
    • 1
  • Daniela Maria do Amaral Ferraz Navarro
    • 3
  • Patrícia Maria Guedes Paiva
    • 1
  1. 1.Departamento de Bioquímica, CCBUniversidade Federal de Pernambuco, Cidade UniversitáriaRecifeBrazil
  2. 2.Centro Acadêmico do AgresteUniversidade Federal de Pernambuco, Nova CaruaruCaruaruBrazil
  3. 3.Departamento de Química Fundamental, CCENUniversidade Federal de Pernambuco, Cidade UniversitáriaRecifeBrazil

Personalised recommendations