Parasitology Research

, Volume 110, Issue 2, pp 545–556 | Cite as

Plasmodium falciparum infection-induced changes in erythrocyte membrane proteins

  • Albin Fontaine
  • Stéphanie Bourdon
  • Maya Belghazi
  • Mathieu Pophillat
  • Patrick Fourquet
  • Samuel Granjeaud
  • Marylin Torrentino-Madamet
  • Christophe Rogier
  • Thierry Fusai
  • Lionel Almeras
Original Paper

Abstract

Over the past decade, advances in proteomic and mass spectrometry techniques and the sequencing of the Plasmodium falciparum genome have led to an increasing number of studies regarding the parasite proteome. However, these studies have focused principally on parasite protein expression, neglecting parasite-induced variations in the host proteome. Here, we investigated P. falciparum-induced modifications of the infected red blood cell (iRBC) membrane proteome, taking into account both host and parasite proteome alterations. Furthermore, we also determined if some protein changes were associated with genotypically distinct P. falciparum strains. Comparison of host membrane proteomes between iRBCs and uninfected red blood cells using fluorescence-based proteomic approaches, such as 2D difference gel electrophoresis revealed that more than 100 protein spots were highly up-represented (fold change increase greater than five) following P. falciparum infection for both strains (i.e. RP8 and Institut Pasteur Pregnancy Associated Malaria). The majority of spots identified by mass spectrometry corresponded to Homo sapiens proteins. However, infection-induced changes in host proteins did not appear to affect molecules located at the outer surface of the plasma membrane. The under-representation of parasite proteins could not be attributed to deficient parasite protein expression. Thus, this study describes for the first time that considerable host protein modifications were detected following P. falciparum infection at the erythrocyte membrane level. Further analysis of infection-induced host protein modifications will improve our knowledge of malaria pathogenesis.

Notes

Acknowledgements

This study was supported by Délégation Générale pour l’Armement (DGA, SalivaPuls Project grant nos. 07CO406 and 03CO008-05, ArthroSer Project grant no. 10Ca401). We thank Dr. Bruno Pouvelle for his useful discussion and his thoughtful comments and inputs.

Supplementary material

436_2011_2521_MOESM1_ESM.doc (64 kb)
Table S1P. falciparum proteins from iRBCs membrane extracts identified by LC Q-TOF. (DOC 64 kb)
436_2011_2521_MOESM2_ESM.doc (102 kb)
Table S2MS/MS.Human proteins from iRBCs membrane extracts identified by LC Q-TOF MS/MS. (DOC 102 kb)
436_2011_2521_MOESM3_ESM.doc (50 kb)
Table S3P. falciparum proteins from biotinylated iRBCs membrane extracts identified by LC Q-TOF MS/MS. (DOC 50 kb)
436_2011_2521_MOESM4_ESM.doc (40 kb)
Table S4Plasmodium falciparum proteins from iRBCs membrane extracts detected out of the master gel scope after metabolic labeling and identified by LC Q-TOF MS/MS. (DOC 39 kb)

References

  1. Acharya P, Kumar R, Tatu U (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153(2):85–94PubMedCrossRefGoogle Scholar
  2. Almeras L, Lefranc D, Drobecq H, de Seze J, Dubucquoi S, Vermersch P, Prin L (2004) New antigenic candidates in multiple sclerosis: identification by serological proteome analysis. Proteomics 4(7):2184–2194PubMedCrossRefGoogle Scholar
  3. Azim-Zadeh O, Hillebrecht A, Linne U, Marahiel MA, Klebe G, Lingelbach K, Nyalwidhe J (2007) Use of biotin derivatives to probe conformational changes in proteins. J Biol Chem 282(30):21609–21617PubMedCrossRefGoogle Scholar
  4. Banumathy G, Singh V, Tatu U (2002) Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 277(6):3902–3912PubMedCrossRefGoogle Scholar
  5. Baunaure F, Langsley G (2005) Protein traffic in Plasmodium infected-red blood cells. Med Sci (Paris) 21(5):523–529CrossRefGoogle Scholar
  6. Behr C, Sarthou JL, Rogier C, Trape JF, Dat MH, Michel JC, Aribot G, Dieye A, Claverie JM, Druihle P et al (1992) Antibodies and reactive T cells against the malaria heat-shock protein Pf72/Hsp70-1 and derived peptides in individuals continuously exposed to Plasmodium falciparum. J Immunol 149(10):3321–3330PubMedGoogle Scholar
  7. Berzins K, Wahlgren M, Perlmann P (1983) Studies on the specificity of anti-erythrocyte antibodies in the serum of patients with malaria. Clin Exp Immunol 54(2):313–318PubMedGoogle Scholar
  8. Bogreau H, Renaud F, Bouchiba H, Durand P, Assi SB, Henry MC, Garnotel E, Pradines B, Fusai T, Wade B, Adehossi E, Parola P, Kamil MA, Puijalon O, Rogier C (2006) Genetic diversity and structure of African Plasmodium falciparum populations in urban and rural areas. Am J Trop Med Hyg 74(6):953–959PubMedGoogle Scholar
  9. Breman JG (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64(1–2 Suppl):1–11PubMedGoogle Scholar
  10. Chishti AH, Maalouf GJ, Marfatia S, Palek J, Wang W, Fisher D, Liu SC (1994) Phosphorylation of protein 4.1 in Plasmodium falciparum-infected human red blood cells. Blood 83(11):3339–3345PubMedGoogle Scholar
  11. Cortes GT, Caldas ML, Rahirant SJ (2011) Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC(16) from infected cell membrane to Maurer’s clefts. Parasitol Res (in press)Google Scholar
  12. Crandall I, Sherman IW (1991) Plasmodium falciparum (human malaria)-induced modifications in human erythrocyte band 3 protein. Parasitology 102(Pt 3):335–340PubMedCrossRefGoogle Scholar
  13. Druilhe P, Gentilini M (1982) In vitro cultivation of Plasmodium falciparum. Applications and limits—methodology. Med Trop (Mars) 42(4):437–462Google Scholar
  14. Dua M, Raphael P, Sijwali PS, Rosenthal PJ, Hanspal M (2001) Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol Biochem Parasitol 116(1):95–99PubMedCrossRefGoogle Scholar
  15. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419(6906):520–526PubMedCrossRefGoogle Scholar
  16. Florens L, Liu X, Wang Y, Yang S, Schwartz O, Peglar M, Carucci DJ, Yates JR 3rd, Wub Y (2004) Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol Biochem Parasitol 135(1):1–11PubMedCrossRefGoogle Scholar
  17. Fontaine A, Pophillat M, Bourdon S, Villard C, Belghazi M, Fourquet P, Durand C, Lefranc D, Rogier C, Fusai T, Almeras L (2010) Specific antibody responses against membrane proteins of erythrocytes infected by Plasmodium falciparum of individuals briefly exposed to malaria. Malar J 9(1):276PubMedCrossRefGoogle Scholar
  18. Fried M, Wendler JP, Mutabingwa TK, Duffy PE (2004) Mass spectrometric analysis of Plasmodium falciparum erythrocyte membrane protein-1 variants expressed by placental malaria parasites. Proteomics 4(4):1086–1093PubMedCrossRefGoogle Scholar
  19. Fried M, Hixson KK, Anderson L, Ogata Y, Mutabingwa TK, Duffy PE (2007) The distinct proteome of placental malaria parasites. Mol Biochem Parasitol 155(1):57–65PubMedCrossRefGoogle Scholar
  20. Gelhaus C, Fritsch J, Krause E, Leippe M (2005) Fractionation and identification of proteins by 2-DE and MS: towards a proteomic analysis of Plasmodium falciparum. Proteomics 5(16):4213–4222PubMedCrossRefGoogle Scholar
  21. Ginsburg H, Stein WD (2004) The new permeability pathways induced by the malaria parasite in the membrane of the infected erythrocyte: comparison of results using different experimental techniques. J Membr Biol 197(2):113–134PubMedCrossRefGoogle Scholar
  22. Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM (2002) Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99(3):1060–1063PubMedCrossRefGoogle Scholar
  23. Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI, Snow RW (2008) The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 5(2):e38PubMedCrossRefGoogle Scholar
  24. Gysin J, Pouvelle B, Fievet N, Scherf A, Lepolard C (1999) Ex vivo desequestration of Plasmodium falciparum-infected erythrocytes from human placenta by chondroitin sulfate A. Infect Immun 67(12):6596–6602PubMedGoogle Scholar
  25. Haldar K, Mohandas N (2007) Erythrocyte remodeling by malaria parasites. Curr Opin Hematol 14(3):203–209PubMedCrossRefGoogle Scholar
  26. Hanspal M, Dua M, Takakuwa Y, Chishti AH, Mizuno A (2002) Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood 100(3):1048–1054PubMedCrossRefGoogle Scholar
  27. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306(5703):1934–1937PubMedCrossRefGoogle Scholar
  28. Hogh B, Petersen E, Crandall I, Gottschau A, Sherman IW (1994) Immune responses to band 3 neoantigens on Plasmodium falciparum-infected erythrocytes in subjects living in an area of intense malaria transmission are associated with low parasite density and high hematocrit value. Infect Immun 62(10):4362–4366PubMedGoogle Scholar
  29. Lanners HN, Bafford RA, Wiser MF (1999) Characterization of the parasitophorous vacuole membrane from Plasmodium chabaudi and implications about its role in the export of parasite proteins. Parasitol Res 85(5):349–355PubMedCrossRefGoogle Scholar
  30. Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, Eling WM, Hall N, Waters AP, Stunnenberg HG, Mann M (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419(6906):537–542PubMedCrossRefGoogle Scholar
  31. Magowan C, Liang J, Yeung J, Takakuwa Y, Coppel RL, Mohandas N (1998) Plasmodium falciparum: influence of malarial and host erythrocyte skeletal protein interactions on phosphorylation in infected erythrocytes. Exp Parasitol 89(1):40–49PubMedCrossRefGoogle Scholar
  32. Maier AG, Cooke BM, Cowman AF, Tilley L (2009) Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 7(5):341–354PubMedCrossRefGoogle Scholar
  33. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306(5703):1930–1933PubMedCrossRefGoogle Scholar
  34. Martin RE, Kirk K (2007) Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood 109(5):2217–2224PubMedCrossRefGoogle Scholar
  35. Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415(6872):673–679PubMedCrossRefGoogle Scholar
  36. Murray MC, Perkins ME (1989) Phosphorylation of erythrocyte membrane and cytoskeleton proteins in cells infected with Plasmodium falciparum. Mol Biochem Parasitol 34(3):229–236PubMedCrossRefGoogle Scholar
  37. Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, Prohaska R, Low PS, Tanner MJ, Mohandas N, Haldar K (2004) Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 103(5):1920–1928PubMedCrossRefGoogle Scholar
  38. Murphy SC, Fernandez-Pol S, Chung PH, Prasanna Murthy SN, Milne SB, Salomao M, Brown HA, Lomasney JW, Mohandas N, Haldar K (2007) Cytoplasmic remodeling of erythrocyte raft lipids during infection by the human malaria parasite Plasmodium falciparum. Blood 110(6):2132–2139PubMedCrossRefGoogle Scholar
  39. Nunes MC, Okada M, Scheidig-Benatar C, Cooke BM, Scherf A (2010) Plasmodium falciparum FIKK kinase members target distinct components of the erythrocyte membrane. PLoS One 5(7):e11747PubMedCrossRefGoogle Scholar
  40. Nyalwidhe J, Baumeister S, Hibbs AR, Tawill S, Papakrivos J, Volker U, Lingelbach K (2002) A nonpermeant biotin derivative gains access to the parasitophorous vacuole in Plasmodium falciparum-infected erythrocytes permeabilized with streptolysin O. J Biol Chem 277(42):40005–40011PubMedCrossRefGoogle Scholar
  41. Pantaleo A, Ferru E, Carta F, Mannu F, Giribaldi G, Vono R, Lepedda AJ, Pippia P, Turrini F (2010) Analysis of changes in tyrosine and serine phosphorylation of red cell membrane proteins induced by P. falciparum growth. Proteomics 10(19):3469–3479PubMedCrossRefGoogle Scholar
  42. Pastorino B, Boucomont-Chapeaublanc E, Peyrefitte CN, Belghazi M, Fusai T, Rogier C, Tolou HJ, Almeras L (2009) Identification of cellular proteome modifications in response to West Nile virus infection. Mol Cell Proteomics 8(7):1623–1637PubMedCrossRefGoogle Scholar
  43. Pei X, An X, Guo X, Tarnawski M, Coppel R, Mohandas N (2005) Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J Biol Chem 280(35):31166–31171PubMedCrossRefGoogle Scholar
  44. Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An X (2007) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110(3):1036–1042PubMedCrossRefGoogle Scholar
  45. Pinne M, Haake DA (2009) A comprehensive approach to identification of surface-exposed, outer membrane-spanning proteins of Leptospira interrogans. PLoS One 4(6):e6071PubMedCrossRefGoogle Scholar
  46. Pouvelle B, Fusai T, Gysin J (1998a) Plasmodium falciparum and chondroitin-4-sulfate: the new key couple in sequestration. Med Trop (Mars) 58(2):187–198Google Scholar
  47. Pouvelle B, Fusai T, Lepolard C, Gysin J (1998b) Biological and biochemical characteristics of cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate. Infect Immun 66(10):4950–4956PubMedGoogle Scholar
  48. Przyborski J, Lanzer M (2004) Parasitology. The malarial secretome. Science 306(5703):1897–1898PubMedCrossRefGoogle Scholar
  49. Saliba KJ, Martin RE, Broer A, Henry RI, McCarthy CS, Downie MJ, Allen RJ, Mullin KA, McFadden GI, Broer S, Kirk K (2006) Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature 443(7111):582–585PubMedGoogle Scholar
  50. Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97(4):1141–1143PubMedCrossRefGoogle Scholar
  51. Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP, Cowman AF (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol 7(2):R12PubMedCrossRefGoogle Scholar
  52. Schetters TP, Hermsen CC, Van Zon AA, Eling WM (1988) Stage-specific proteins of Plasmodium berghei-infected red blood cells detected by antibodies of immune mouse serum. Parasitol Res 75(1):69–72PubMedCrossRefGoogle Scholar
  53. Taraschi TF, O’Donnell M, Martinez S, Schneider T, Trelka D, Fowler VM, Tilley L, Moriyama Y (2003) Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood 102(9):3420–3426PubMedCrossRefGoogle Scholar
  54. Torrentino-Madamet M, Almeras L, Desplans J, Le Priol Y, Belghazi M, Pophillat M, Fourquet P, Jammes Y, Parzy D (2011) Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach. Malar J. 10 (1):4Google Scholar
  55. Trager W, Jensen JB (2005) Human malaria parasites in continuous culture. 1976. J Parasitol 91(3):484–486PubMedCrossRefGoogle Scholar
  56. Trampuz A, Jereb M, Muzlovic I, Prabhu RM (2003) Clinical review: severe malaria. Crit Care 7(4):315–323PubMedCrossRefGoogle Scholar
  57. Tsarukyanova I, Drazba JA, Fujioka H, Yadav SP, Sam-Yellowe TY (2009) Proteins of the Plasmodium falciparum two transmembrane Maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol Res 104(4):875–891PubMedCrossRefGoogle Scholar
  58. van Ooij C, Tamez P, Bhattacharjee S, Hiller NL, Harrison T, Liolios K, Kooij T, Ramesar J, Balu B, Adams J, Waters AP, Janse CJ, Haldar K (2008) The malaria secretome: from algorithms to essential function in blood stage infection. PLoS Pathog 4(6):e1000084PubMedCrossRefGoogle Scholar
  59. Vincensini L, Richert S, Blisnick T, Van Dorsselaer A, Leize-Wagner E, Rabilloud T, Braun Breton C (2005) Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol Cell Proteomics 4(4):582–593PubMedCrossRefGoogle Scholar
  60. Wahlgren M, Berzins K, Perlmann P, Bjorkman A (1983) Characterization of the humoral immune response in Plasmodium falciparum malaria. I. Estimation of antibodies to P. falciparum or human erythrocytes by means of microELISA. Clin Exp Immunol 54(1):127–134PubMedGoogle Scholar
  61. Waller KL, Nunomura W, An X, Cooke BM, Mohandas N, Coppel RL (2003) Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood 102(5):1911–1914PubMedCrossRefGoogle Scholar
  62. Waller KL, Stubberfield LM, Dubljevic V, Nunomura W, An X, Mason AJ, Mohandas N, Cooke BM, Coppel RL (2007) Interactions of Plasmodium falciparum erythrocyte membrane protein 3 with the red blood cell membrane skeleton. Biochim Biophys Acta 1768(9):2145–2156PubMedCrossRefGoogle Scholar
  63. Wickert H, Gottler W, Krohne G, Lanzer M (2004) Maurer’s cleft organization in the cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur J Cell Biol 83(10):567–582PubMedCrossRefGoogle Scholar
  64. Wickham ME, Rug M, Ralph SA, Klonis N, McFadden GI, Tilley L, Cowman AF (2001) Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 20(20):5636–5649PubMedCrossRefGoogle Scholar
  65. Wiser MF, Lanners HN (1992) Rapid transport of the acidic phosphoproteins of Plasmodium berghei and P. chabaudi from the intraerythrocytic parasite to the host membrane using a miniaturized fractionation procedure. Parasitol Res 78(3):193–200PubMedCrossRefGoogle Scholar
  66. Wu Y, Craig A (2006) Comparative proteomic analysis of metabolically labelled proteins from Plasmodium falciparum isolates with different adhesion properties. Malar J 5:67PubMedCrossRefGoogle Scholar
  67. Wu Y, Nelson MM, Quaile A, Xia D, Wastling JM, Craig A (2009) Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum. Malar J 8:105PubMedCrossRefGoogle Scholar
  68. Wunderlich F, Helwig M, Schillinger G, Speth V (1988a) Cryptic disposition of antigenic parasite proteins in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Mol Biochem Parasitol 30(1):55–65PubMedCrossRefGoogle Scholar
  69. Wunderlich F, Helwig M, Schillinger G, Speth V, Wiser MF (1988b) Expression of the parasite protein Pc90 in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Eur J Cell Biol 47(2):157–164PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Albin Fontaine
    • 1
  • Stéphanie Bourdon
    • 1
  • Maya Belghazi
    • 2
  • Mathieu Pophillat
    • 3
  • Patrick Fourquet
    • 3
  • Samuel Granjeaud
    • 4
  • Marylin Torrentino-Madamet
    • 1
  • Christophe Rogier
    • 1
  • Thierry Fusai
    • 1
  • Lionel Almeras
    • 1
  1. 1.Unité de ParasitologieInstitut de Recherche Biomédicale des Armées (IRBA)Marseille Cedex 07France
  2. 2.Centre d’Analyse Proteomique de Marseille (CAPM)IFR Jean RocheMarseille cedex 20France
  3. 3.Centre d’Immunologie de Marseille Luminy (CIML), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueUniversité de la MéditerranéeMarseille Cedex 09France
  4. 4.TAGC INSERM ERM 206Marseille Cedex 9France

Personalised recommendations