Parasitology Research

, Volume 109, Issue 6, pp 1715–1718 | Cite as

Do secretions from the uropygial gland of birds attract biting midges and black flies?

  • Josué Martínez-de la Puente
  • Juan Rivero-de Aguilar
  • Sara del Cerro
  • Anastasio Argüello
  • Santiago Merino
Short Communication

Abstract

Bird susceptibility to attacks by blood-sucking flying insects could be influenced by urogypial gland secretions. To determine the effect of these secretions on biting midges and black flies, we set up a series of tests. First, we placed uropygial gland secretions from blue tit Cyanistes caeruleus broods inside empty nest boxes while empty nest boxes without gland secretions were treated as controls. Blue tit broods, from which we had obtained uropygial secretions, were affected by biting midges and black flies. However, these insects were absent in nest boxes both with and without secretions from nestlings’ uropygial glands. We subsequently tested for the effects of uropygial gland secretions from feral pigeons Columba livia monitoring the number of biting midges captured using miniature CDC traps. There was no significant difference in the number of biting midges captured. Overall, our results did not support a potential role of avian uropygial gland secretions in attracting biting midges and black flies.

Notes

Acknowledgements

Financial support was provided by projects CGL2009-09439 and AGL 2009–11944 from Ministerio de Ciencia e Innovación. Junta de Castilla y León authorized the ringing and handling of birds in Valsaín. We also extend our gratitude to Javier Donés (Director of “Montes de Valsaín”) for permission to work in Valsaín. Excmo. Ayuntamiento de Arucas authorized the handling of pigeons. J.M.P. was supported by a postdoctoral grant from the Universidad de Las Palmas de Gran Canaria. We thank N. Castro, I. Moreno, A. Morales and L. Hernández for their help. An anonymous reviewer and A P. Møller considerably improved a previous version of the manuscript. We specially thank Heather Briggs for checking the English. This study is a contribution to the research partially developed at “El Ventorrillo” field station.

References

  1. Allan SA, Bernier UR, Kline DL (2006) Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol 43:225–231PubMedCrossRefGoogle Scholar
  2. Bennett GF, Fallis AM, Campbell AG (1972) The response of Simulium (Eusimulium) euryadminiculum (Davies) (Diptera: Simuliidae) to some olfactory and visual stimuli. Can J Zool 50:793–800CrossRefGoogle Scholar
  3. Bishop AL, Bellis GA, McKenzie HJ, Spohr LJ, Worrall RJ, Harris AM, Melville L (2006) Light trapping of biting midges Culicoides spp. (Diptera: Ceratopogonidae) with green light-emitting diodes. Aust J Entomol 45:202–205CrossRefGoogle Scholar
  4. Cooperband MF, McElfresh JS, Millar JG, Carde RT (2008) Attraction of female Culex quinquefasciatus Say (Diptera: Culicidae) to odors from chicken feces. J Insect Physiol 54:1184–1192PubMedCrossRefGoogle Scholar
  5. Delécolle JC (2002) Ceratopogonidae. In: Carles-Tolrá Hjorth-Andersen M (ed) Catálogo de los Diptera de España, Portugal y Andorra (Insecta). Monografías S.E.A. 8:26–33Google Scholar
  6. Fallis AM, Smith SM (1964) Ether extracts from birds and CO2 as attractants for some ornithophilic simuliids. Can J Zool 42:723–730CrossRefGoogle Scholar
  7. Galván I, Sanz JJ (2006) Feather mite abundance increases with uropygial gland size and plumage yellowness in great tits Parus major. Ibis 148:687–697CrossRefGoogle Scholar
  8. Gerry AC, Sarto I, Monteys V, Moreno Vidal J-O, Francino O, Mullens BA (2009) Biting rates of Culicoides midges (Diptera: Ceratopogonidae) on sheep in northeastern Spain in relation to midge capture using UV light and carbon dioxide-baited traps. J Med Entomol 46:615–624PubMedCrossRefGoogle Scholar
  9. Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous Diptera to host stimuli. Med Vet Entomol 13:2–23PubMedCrossRefGoogle Scholar
  10. Kline DL, Lemire GF (1995) Field evaluation of heat as an added attractant to traps baited with carbon dioxide and octenol for Aedes taeniorhynchus. J Am Mosq Control Assoc 11:454–456PubMedGoogle Scholar
  11. Lassen SB, Nielsen SA, Skovgård H, Kristensen M (2010) Molecular identification of bloodmeals from biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) in Denmark. Parasitol Res 108:823–829PubMedCrossRefGoogle Scholar
  12. Lehane M (2005) The biology of blood-sucking in insects, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Ligon RA, Burkett-Cadena ND, Liu M, Hill GE, Hassan KH, Unnasch TR (2009) Assessing mosquito feeding patterns on nestling and brooding adult birds using microsatellite markers. Am J Trop Med Hyg 81:534–537PubMedGoogle Scholar
  14. Lowther JK, Wood DM (1964) Specificity of a black fly, Simulium euryadminiculum Davies, toward its host, the common loon. Can Entomol 96:911–913CrossRefGoogle Scholar
  15. Martínez-de la Puente J, Merino S, Lobato E, Rivero-de Aguilar J, del Cerro S, Ruiz-de-Castañeda R (2009a) Testing the use of a citronella-based repellent as an effective method to reduce the prevalence and abundance of biting flies in avian nests. Parasitol Res 104:1233–1236PubMedCrossRefGoogle Scholar
  16. Martínez-de la Puente J, Merino S, Lobato E, Rivero-de Aguilar J, del Cerro S, Ruiz-de-Castañeda R, Moreno J (2009b) Does weather affect biting fly abundance in avian nests? J Avian Biol 40:653–657CrossRefGoogle Scholar
  17. Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, Talavera S, Sarto i Monteys V (2009c) Factors affecting Culicoides species composition and abundance in avian nests. Parasitology 136:1033–1041PubMedCrossRefGoogle Scholar
  18. Martínez-de la Puente J, Merino S, Lobato E, Rivero-de Aguilar J, del Cerro S, Ruiz-de-Castañeda R, Moreno J (2010) Nest-climatic factors affect the abundance of biting flies and their effects on nestling condition. Acta Oecol 36:543–547CrossRefGoogle Scholar
  19. Møller AP, Erritzøe J, Rózsa L (2010) Ectoparasites, uropygial glands and hatching success in birds. Oecologia 163:303–311PubMedCrossRefGoogle Scholar
  20. Nigam Y, Ward RD (1991) The effect of male sandfly pheromone and host factors as attractants for female Lutzomyia longipalpis (Diptera: Psychodidae). Physiol Entomol 16:305–312CrossRefGoogle Scholar
  21. Russell CB, Hunter FF (2005) Attraction of Culex pipiens/restuans (Diptera: Culicidae) mosquitoes to bird uropygial gland odors at two elevations in the Niagara region of Ontario. J Med Entomol 42:301–305PubMedCrossRefGoogle Scholar
  22. Smith RN, Cain SL, Anderson SH, Dunk JR, Williams S (1998) Blackfly-induced mortality of nestling red-tailed hawks. Auk 115:368–375Google Scholar
  23. Syed Z, Leal WS (2009) Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci USA 106:18803–18808PubMedCrossRefGoogle Scholar
  24. Tomás G, Merino S, Martínez-de la Puente J, Moreno J, Morales J, Lobato E (2008a) Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia 156:305–312PubMedCrossRefGoogle Scholar
  25. Tomás G, Merino S, Martínez-de la Puente J, Moreno J, Morales J, Lobato E (2008b) A simple trapping method to estimate abundances of blood-sucking flying insects in avian nests. Anim Behav 75:723–729CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Josué Martínez-de la Puente
    • 1
    • 3
  • Juan Rivero-de Aguilar
    • 2
  • Sara del Cerro
    • 2
  • Anastasio Argüello
    • 1
  • Santiago Merino
    • 2
  1. 1.Department of Animal ScienceUniversidad de las Palmas de Gran CanariaArucasSpain
  2. 2.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
  3. 3.Departamento de Ecología de HumedalesEstación Biológica de Doñana (EBD-CSIC)SevilleSpain

Personalised recommendations