Advertisement

Parasitology Research

, Volume 109, Issue 6, pp 1637–1646 | Cite as

Modulation of mouse macrophage proteome induced by Toxoplasma gondii tachyzoites in vivo

  • D. H. Zhou
  • Z. G. Yuan
  • F. R. Zhao
  • H. L. Li
  • Y. Zhou
  • R. Q. Lin
  • F. C. Zou
  • H. Q. Song
  • M. J. XuEmail author
  • X. Q. ZhuEmail author
Original Paper

Abstract

Toxoplasma gondii is an obligate intracellular protozoan parasite, which can invade and multiply within the macrophages of humans and most warm-blooded animals. Macrophages are important effector cells for the control and killing of intracellular T. gondii, and they may also serve as long-term host cells for the replication and survival of the parasite. In the present study, we explored the proteomic profile of macrophages of the specific pathogen-free Kunming mice at 24 h after infection with tachyzoites of the virulent T. gondii RH strain using two-dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight (TOF)/TOF tandem mass spectrometry. Totally, 60 differentially expressed protein spots were identified. Among them, 52 spots corresponded to 38 proteins matching to proteins of the mouse, including actin, enolase, calumenin, vimentin, plastin 2, annexin A1, cathepsin S, arginase-1, arachidonate 12-lipoxygenase, and aminoacylase-1. Functional prediction using Gene Ontology database showed that these proteins were mainly involved in metabolism, structure, protein fate, and immune responses. The findings provided an insight into the interactive relationship between T. gondii and the host macrophages, and will shed new lights on the understanding of molecular mechanisms of T. gondii pathogenesis.

Keywords

Infected Macrophage Kunming Mouse Host Macrophage Express Protein Spot Gene Ontology Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported, in part, by the National Natural Science Foundation of China (grant no. 30901067), the Natural Science Foundation of Guangdong Province (grant no. 9451064201003715), the State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (SKLVEB2009KFKT014 and SKLVEB2010KFKT010), the Special Fund for Agro-scientific Research in the Public Interest (grant no. 200803017), the Program for Changjiang Scholars and Innovative Research Team in University (grant no. IRT0723), and the Yunnan Provincial Program for Introducing High-level Scientists (grant no. 2009CI125). The experiments comply with the current laws of the country in which the experiments were performed.

References

  1. Bogdan C, Röllinghoff M (1999) How do protozoan parasites survive inside macrophages? Parasitol Today 15:22–28PubMedCrossRefGoogle Scholar
  2. Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferquson DJ, Sanderson SJ, Wastling JM, Boothroyd JC (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host–parasite interactions in Toxoplasma gondii. J Biol Chem 280:34245–34258PubMedCrossRefGoogle Scholar
  3. Che FY, Madrid-Aliste C, Burd B, Zhang H, Nieves E, Kim K, Fiser A, Angeletti RH, Weiss LM (2011) Comprehensive proteomic analysis of membrane proteins in Toxoplasma gondii. Mol Cell Proteomics. doi: 10:M110.000745 PubMedGoogle Scholar
  4. Chen Z, Harb OS, Roos DS (2008) In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii. PLoS ONE 3:e3611PubMedCrossRefGoogle Scholar
  5. Choi SH, Kim TY, Park SG, Cha GH, Shin DW, Chai JY, Lee YH (2010) Proteomic analysis of Toxoplasma gondii KI-1 tachyzoites. Korean J Parasitol 48:195–201PubMedCrossRefGoogle Scholar
  6. Craven RA, Hanrahan S, Totty N, Harnden P, Stanley AJ, Maher ER, Harris AL, Trimble WS, Selby PJ, Banks RE (2006) Proteomic identification of a role for the von Hippel Lindau tumour suppressor in changes in the expression of mitochondrial proteins and septin 2 in renal cell carcinoma. Proteomics 6:3880–3893PubMedCrossRefGoogle Scholar
  7. DaMatta RA, Seabra SH, de Souza W (1998) Further studies on the phagocytic capacity of chicken thrombocytes. J Submicrosc Cytol Pathol 30:271–277PubMedGoogle Scholar
  8. Diment S, Dean MF (1983) Receptor-mediated endocytosis of fibroblast beta-glucuronidase by peritoneal macrophages. Biochim Biophys Acta 762:165–174PubMedCrossRefGoogle Scholar
  9. El Hajj H, Demey E, Poncet J, Lebrun M, Wu B, Galéotti N, Fourmaux MN, Mercereau-Puijalon O, Vial H, Labesse G, Dubremetz JF (2006) The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling. Proteomics 6:5773–5784PubMedCrossRefGoogle Scholar
  10. Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii–host cell interactions. Mol Cell Proteomics 7:891–910PubMedCrossRefGoogle Scholar
  11. Ferguson DJ, Parmley SF, Tomavo S (2002) Evidence for nuclear localisation of two stage-specific isoenzymes of enolase in Toxoplasma gondii correlates with active parasite replication. Int J Parasitol 32:1399–1410PubMedCrossRefGoogle Scholar
  12. Hoja-Łukowicz D, Butters TD, Lityńska A (2004) Characterization of the oligosaccharide component of microsomal beta-glucuronidase from rat liver. Biochimie 86:363–372PubMedCrossRefGoogle Scholar
  13. John CD, Christian HC, Morris JF, Flower RJ, Solito E, Buckingham JC (2004) Annexin 1 and the regulation of endocrine function. Trends Endocrinol Metab 15:103–109PubMedCrossRefGoogle Scholar
  14. Kao SH, Hsu TC, Yu JS, Chen JT, Li SL, Lai WX, Tzang BS (2010) Proteomic analysis for the anti-apoptotic effects of cystamine on apoptosis-prone macrophage. J Cell Biochem 110:660–670PubMedCrossRefGoogle Scholar
  15. Kawase O, Nishikawa Y, Bannai H, Zhang H, Zhang G, Jin S, Lee EG, Xuan X (2007) Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii. Proteomics 7:3718–3725PubMedCrossRefGoogle Scholar
  16. Kibe MK, Coppin A, Dendouga N, Oria G, Meurice E, Mortuaire M, Madec E, Tomavo S (2005) Transcriptional regulation of two stage-specifically expressed genes in the protozoan parasite Toxoplasma gondii. Nucleic Acids Res 33:1722–1736PubMedCrossRefGoogle Scholar
  17. Ma GY, Zhang JZ, Yin GR, Zhang JH, Meng XL, Zhao F (2009) Toxoplasma gondii: proteomic analysis of antigenicity of soluble tachyzoite antigen. Exp Parasitol 122:41–46PubMedCrossRefGoogle Scholar
  18. Morisaki JH, Heuser JE, Sibley LD (1995) Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci 108:2457–2464PubMedGoogle Scholar
  19. Nelson MM, Jones AR, Carmen JC, Sinai AP, Burchmore R, Wastling JM (2008) Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infect Immun 76:828–844PubMedCrossRefGoogle Scholar
  20. Nichols BA, O’Connor GR (1981) Penetration of mouse peritoneal macrophages by the protozoon Toxoplasma gondii. New evidence for active invasion and phagocytosis. Lab Invest 44:324–335PubMedGoogle Scholar
  21. Pocaly M, Lagarde V, Etienne G, Dupouy M, Lapaillerie D, Claverol S, Vilain S, Bonneu M, Turcq B, Mahon FX, Pasquet JM (2008) Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance. Proteomics 8:2394–2406PubMedCrossRefGoogle Scholar
  22. Qureshi MA, Heggen CL, Hussain I (2000) Avian macrophage: effector functions in health and disease. Dev Comp Immunol 24:103–119PubMedCrossRefGoogle Scholar
  23. Sahoo SK, Kim do H (2010) Characterization of calumenin in mouse heart. BMB Rep 43:158–163PubMedCrossRefGoogle Scholar
  24. Seabra SH, de Souza W, DaMatta RA (2002) Toxoplasma gondii partially inhibits nitric oxide production of activated murine macrophages. Exp Parasitol 100:62–70PubMedCrossRefGoogle Scholar
  25. Sibley LD, Adams LB, Krahenbuhl JL (1993) Macrophage interactions in toxoplasmosis. Res Immunol 144:38–40PubMedCrossRefGoogle Scholar
  26. Stempin CC, Dulgerian LR, Garrido VV, Cerban FM (2010) Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J Biomed Biotechnol 2010:683485PubMedCrossRefGoogle Scholar
  27. Su JT, Kim SH, Yan YB (2007) Dissecting the pretransitional conformational changes in aminoacylase I thermal denaturation. Biophys J 92:578–587PubMedCrossRefGoogle Scholar
  28. Sweeney KR, Morrissette NS, LaChapelle S, Blader IJ (2010) Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton. Eukaryot Cell 9:1680–1689PubMedCrossRefGoogle Scholar
  29. Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Fujimoto M, Nishisaka T, Okita K, Oka M, Nakamura K (2005) Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics 5:1686–1692PubMedCrossRefGoogle Scholar
  30. Terrier B, Degand N, Guilpain P, Servettaz A, Guillevin L, Mouthon L (2007) Alpha-enolase: a target of antibodies in infectious and autoimmune diseases. Autoimmun Rev 6:176–182PubMedCrossRefGoogle Scholar
  31. Weiss LM, Fiser A, Angeletti RH, Kim K (2009) Toxoplasma gondii proteomics. Expert Rev Proteomics 6:303–313PubMedCrossRefGoogle Scholar
  32. Wendt W, Lübbert H, Stichel CC (2008) Upregulation of cathepsin S in the aging and pathological nervous system of mice. Brain Res 1232:7–20PubMedCrossRefGoogle Scholar
  33. Williams AS, Eynott PR, Leung SY, Nath P, Jupp R, De Sanctis GT, Resnick R, Adcock IM, Chung KF (2009) Role of cathepsin S in ozone-induced airway hyperresponsiveness and inflammation. Pulm Pharmacol Ther 22:27–32PubMedCrossRefGoogle Scholar
  34. Xia D, Sanderson SJ, Jones AR, Prieto JH, Yates JR, Bromley E, Tomley FM, Lal K, Sinden RE, Brunk BP, Roos DS, Wastling JM (2008) The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol 9:R116PubMedCrossRefGoogle Scholar
  35. Ye Y, Mar EC, Tong S, Sammons S, Fang S, Anderson LJ, Wang D (2010) Application of proteomics methods for pathogen discovery. J Virol Methods 163:87–95PubMedCrossRefGoogle Scholar
  36. Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol Chapter 14:Unit 14.1Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. H. Zhou
    • 1
    • 2
  • Z. G. Yuan
    • 1
    • 2
  • F. R. Zhao
    • 1
    • 2
  • H. L. Li
    • 1
    • 2
  • Y. Zhou
    • 1
  • R. Q. Lin
    • 1
  • F. C. Zou
    • 3
  • H. Q. Song
    • 1
    • 2
  • M. J. Xu
    • 2
    Email author
  • X. Q. Zhu
    • 2
    • 3
    Email author
  1. 1.Department of Parasitology, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu ProvinceLanzhou Veterinary Research Institute, CAASLanzhouPeople’s Republic of China
  3. 3.College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingPeople’s Republic of China

Personalised recommendations