Advertisement

Parasitology Research

, Volume 109, Issue 4, pp 1075–1084 | Cite as

An evolutionary analysis of trypanosomatid GP63 proteases

  • Lina Ma
  • Kaifu Chen
  • Qingshu Meng
  • Qingyou Liu
  • Petrus Tang
  • Songnian HuEmail author
  • Jun YuEmail author
Original Paper

Abstract

The trypanosomatid GP63 proteases are known to be involved in parasite–host interaction and exhibit strong sequence and structural similarities to those of their hosts and insect vectors. Based on genome sequences of the three trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., we annotated all their GP63 proteases and divided highly duplicated T. cruzi GP63 proteases into four novel groups according to sequence features. In Leishmania spp., we studied the evolutionary dynamics of GP63 proteins and identified 57 amino acid sites that are under significant positive selections. These sites may contribute to the functional variations of the GP63 proteases and provide clues for vaccine development.

Keywords

Visceral Leishmaniasis Leishmaniasis Cutaneous Leishmaniasis Site Model Leishmania Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are very grateful to Drs. Yingfeng Luo and Dan Qi for their useful suggestions and comments during the study and Mr. Joe Yu for editing the manuscript. The work is supported by a grant from National Science and Technology Key Project (2008ZX1004-013), the Ministry of Science and Technology of the People’s Republic of China.

Supplementary material

436_2011_2348_MOESM1_ESM.doc (76 kb)
Resource 1 Abbreviations for all the species used in our analysis (DOC 75 kb)
436_2011_2348_MOESM2_ESM.doc (247 kb)
Resource 2 The GI number and Genbank accession of the amino acid sequences that are used in our analysis (DOC 247 kb)
436_2011_2348_MOESM3_ESM.doc (418 kb)
Resource 3 Redefinition of leishmanolysin based on pfam GP63 model. Each fragment listed in the table is considered to be similar to pfam’s leishmanolysin model (DOC 418 kb)
436_2011_2348_MOESM4_ESM.doc (230 kb)
Resource 4 The relative positions of common segment to the zinc-binding motif. “0” means the common segment has been interrupted (DOC 230 kb)
436_2011_2348_MOESM5_ESM.doc (140 kb)
Resource 5 Alignment of the 290 sequences’ common segment. The colored sites are conserved in more than 90% sequences (DOC 140 kb)
436_2011_2348_MOESM6_ESM.doc (757 kb)
Resource 6 The complete maximun likelihood (ML) tree of the 290 GP63 protease (DOC 757 kb)

References

  1. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  2. Alvarez-Valin F, Tort JF, Bernardi G (2000) Nonrandom spatial distribution of synonymous substitutions in the gp63 gene from Leishmania. Genetics 155:1683–1692PubMedGoogle Scholar
  3. Atwood JA III, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL (2005) The Trypanosoma cruzi proteome. Science 309:473–476PubMedCrossRefGoogle Scholar
  4. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422PubMedCrossRefGoogle Scholar
  5. Bordier C, Etges RJ, Ward J, Turner MJ, Cardoso de Almeida ML (1986) Leishmania and Trypanosoma surface glycoproteins have a common glycophospholipid membrane anchor. Proc Natl Acad Sci USA 83:5988–5991PubMedCrossRefGoogle Scholar
  6. Brenchley R, Tariq H, McElhinney H, Szoor B, Huxley-Jones J, Stevens R, Matthews K, Tabernero L (2007) The tritryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics 8:434PubMedCrossRefGoogle Scholar
  7. Burri C, Brun R (2003) Human African trypanosomiasis. In: Cook GC, Zumla A (eds) Manson’s Tropical Diseases, 21st edn. WB Saunders, London, pp 1303–1323Google Scholar
  8. Chaudhuri G, Chaudhuri M, Pan A, Chang KP (1989) Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages. J Biol Chem 264:7483–7489PubMedGoogle Scholar
  9. Cuevas IC, Cazzulo JJ, Sanchez DO (2003) Gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 71:5739–5749PubMedCrossRefGoogle Scholar
  10. Di Lella F, Vincenti V, Zennaro D, Afeltra A, Baldi A, Giordano D, Pasanisi E, Bacciu A, Bacciu S, Di Lella G (2006) Mucocutaneous leishmaniasis: report of a case with massive involvement of nasal, pharyngeal and laryngeal mucosa. Int J Oral Maxillofac Surg 35:870–872PubMedCrossRefGoogle Scholar
  11. Dominguez M, Moreno I, Lopez-Trascasa M, Torano A (2002) Complement interaction with trypanosomatid promastigotes in normal human serum. J Exp Med 195:451–459PubMedCrossRefGoogle Scholar
  12. Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391PubMedCrossRefGoogle Scholar
  13. El-Sayed NM, Donelson JE (1997) African trypanosomes have differentially expressed genes encoding homologues of the Leishmania gp63 surface protease. J Biol Chem 272:26742–26748PubMedCrossRefGoogle Scholar
  14. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005a) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409PubMedCrossRefGoogle Scholar
  15. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005b) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415PubMedCrossRefGoogle Scholar
  16. Fernandes AP, Nelson K, Beverley SM (1993) Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci USA 90:11608–11612PubMedCrossRefGoogle Scholar
  17. Grandgenett PM, Coughlin BC, Kirchhoff LV, Donelson JE (2000) Differential expression of gp63 genes in Trypanosoma cruzi. Mol Biochem Parasitol 110:409–415PubMedCrossRefGoogle Scholar
  18. Grandgenett PM, Otsu K, Wilson HR, Wilson ME, Donelson JE (2007) A function for a specific zinc metalloprotease of African trypanosomes. PLoS Pathog 3:1432–1445PubMedCrossRefGoogle Scholar
  19. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O'Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442PubMedCrossRefGoogle Scholar
  20. Joshi PB, Kelly BL, Kamhawi S, Sacks DL, McMaster WR (2002) Targeted gene deletion in Leishmania major identifies leishmanolysin (gp63) as a virulence factor. Mol Biochem Parasitol 120:33–40PubMedCrossRefGoogle Scholar
  21. Kemp M, Hey AS, Kurtzhals JA, Christensen CB, Gaafar A, Mustafa MD, Kordofani AA, Ismail A, Kharazmi A, Theander TG (1994) Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis. Clin Exp Immunol 96:410–415PubMedCrossRefGoogle Scholar
  22. Krogh A, Brown M, Mian IS, Sjolander K, Haussler D (1994) Hidden markov models in computational biology. Applications to protein modeling. J Mol Biol 235:1501–1531PubMedCrossRefGoogle Scholar
  23. Kulkarni MM, Olson CL, Engman DM, McGwire BS (2009) Trypanosoma cruzi gp63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infect Immun 77:2193–2200PubMedCrossRefGoogle Scholar
  24. Kurtzhals JA, Hey AS, Jardim A, Kemp M, Schaefer KU, Odera EO, Christensen CB, Githure JI, Olafson RW, Theander TG et al (1994) Dichotomy of the human T cell response to Leishmania antigens. II. Absent or Th2-like response to gp63 and Th1-like response to lipophosphoglycan-associated protein in cells from cured visceral leishmaniasis patients. Clin Exp Immunol 96:416–421PubMedCrossRefGoogle Scholar
  25. LaCount DJ, Gruszynski AE, Grandgenett PM, Bangs JD, Donelson JE (2003) Expression and function of the Trypanosoma brucei major surface protease (gp63) genes. J Biol Chem 278:24658–24664PubMedCrossRefGoogle Scholar
  26. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) Consurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302PubMedCrossRefGoogle Scholar
  27. Launois P, Tacchini-Cottier F, Kieny MP (2008) Cutaneous leishmaniasis: progress towards a vaccine. Expert Rev Vaccin 7:1277–1287CrossRefGoogle Scholar
  28. Lipoldova M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7:294–305PubMedCrossRefGoogle Scholar
  29. McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for new world cutaneous leishmaniases or the visceral disease? Immunol Rev 201:206–224PubMedCrossRefGoogle Scholar
  30. O'Brien SJ, Menotti-Raymond M, Murphy WJ, Nash WG, Wienberg J, Stanyon R, Copeland NG, Jenkins NA, Womack JE, Marshall Graves JA (1999) The promise of comparative genomics in mammals. Science 286(458–462):479–481Google Scholar
  31. Osorio LE, Castillo CM, Ochoa MT (1998) Mucosal leishmaniasis due to Leishmania (viannia) panamensis in Colombia: clinical characteristics. Am J Trop Med Hyg 59:49–52PubMedGoogle Scholar
  32. Overath P, Haag J, Lischke A, O'HUigin C (2001) The surface structure of trypanosomes in relation to their molecular phylogeny. Int J Parasitol 31:468–471PubMedCrossRefGoogle Scholar
  33. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LR, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847PubMedCrossRefGoogle Scholar
  34. Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13:151–177PubMedCrossRefGoogle Scholar
  35. Retief JD (2000) Phylogenetic analysis using phylip. Methods Mol Biol 132:243–258PubMedGoogle Scholar
  36. Santos AL, Branquinha MH, D'Avila-Levy CM (2006) The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. An Acad Bras Cienc 78:687–714PubMedCrossRefGoogle Scholar
  37. Schlagenhauf E, Etges R, Metcalf P (1998) The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63). Structure 6:1035–1046PubMedCrossRefGoogle Scholar
  38. Sharma NL, Mahajan VK, Kanga A, Sood A, Katoch VM, Mauricio I, Singh CD, Parwan UC, Sharma VK, Sharma RC (2005) Localized cutaneous leishmaniasis due to Leishmania donovani and Leishmania tropica: preliminary findings of the study of 161 new cases from a new endemic focus in Himachal Pradesh, India. Am J Trop Med Hyg 72:819–824PubMedGoogle Scholar
  39. Simpson AG, Roger AJ (2004) The real ‘kingdoms’ of eukaryotes. Curr Biol 14:R693–R696PubMedCrossRefGoogle Scholar
  40. Smith DF, Peacock CS, Cruz AK (2007) Comparative genomics: from genotype to disease phenotype in the Leishmaniases. Int J Parasitol 37:1173–1186PubMedCrossRefGoogle Scholar
  41. Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463PubMedCrossRefGoogle Scholar
  42. Spitzer N, Jardim A, Lippert D, Olafson RW (1999) Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine 17:1298–1300PubMedCrossRefGoogle Scholar
  43. Stevens JR, Noyes HA, Schofield CJ, Gibson W (2001) The molecular evolution of Trypanosomatidae. Adv Parasitol 48:1–56PubMedCrossRefGoogle Scholar
  44. Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310PubMedCrossRefGoogle Scholar
  45. Wilson ME, Jeronimo SM, Pearson RD (2005) Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog 38:147–160PubMedCrossRefGoogle Scholar
  46. Yang Z (1997) Paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  47. Yang Z, Wong WS, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar
  48. Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of Leishmania sp. biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 132:1–16PubMedCrossRefGoogle Scholar
  49. Yao C, Donelson JE, Wilson ME (2007) Internal and surface-localized major surface proteases of Leishmania spp. and their differential release from promastigotes. Eukaryot Cell 6:1905–1912PubMedCrossRefGoogle Scholar
  50. Yao C (2010) Major surface protease of trypanosomatids: one size fits all? Infect Immun 78:22–31PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of GenomicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Graduate UniversityChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Molecular Regulation and Bioinformatics LaboratoryChang Gung UniversityTaoyuanTaiwan
  4. 4.Animal Reproduction Institute, Guangxi Key Laboratory of Subtropical Bioresource Conservation and UtilizationGuangxi UniversityNanningPeople’s Republic of China

Personalised recommendations