Advertisement

Parasitology Research

, Volume 109, Issue 3, pp 539–544 | Cite as

Occurrence and genetic characterization of Giardia duodenalis from captive nonhuman primates by multi-locus sequence analysis

  • Rafael Alberto Martínez-DíazEmail author
  • José Sansano-Maestre
  • María del Carmen Martínez-Herrero
  • Francisco Ponce-Gordo
  • María Teresa Gómez-Muñoz
Original Paper

Abstract

Giardia is the most common enteric protozoan that can be pathogenic to both humans and animals. Transmission can be direct through the faecal–oral route, or through ingestion of contaminated water or food. Genetic characterization of Giardia duodenalis isolates has demonstrated the existence of seven groups (assemblages A to G) which differ in their host distribution. Assemblages A and B are present in humans and other primates, dogs, cats, rodents, and other species of wild mammals, but the role of the different host animals in the epidemiology of human infection remains unclear. With this preliminary data, we can infer that nonhuman primates (NHP) might be a potential reservoir for zoonotic transmission. This research paper discusses the presence of Giardia in nonhuman primates housed in two Spanish zoological gardens (located in Valencia and Madrid). Twenty faecal samples obtained from 16 different species of NHP were studied; 70% were positives to Giardia, and genetic analyses were performed by sequencing of four genes (SSrRNA, glutamate dehydrogenase, triose phosphate isomerase, and beta-giardin). The assemblage A was the most frequent (63.4%) in the species studied. A sequence from a red ruffed lemur (corresponding to genotype AI) was obtained, and this is the first reported sequence of a gdh gene obtained from this species. The multi-locus sequence analysis was also performed on the samples positive to nested PCR belonging to assemblage B. After amplification using the GDHeF, GDHiF, and GDHiR gdh primers; AL3543, AL3546, AL3544, and AL3545 tpi primers; G7, G759, GBF, and GBR bg primers, amplicons of 432, 500, and 511 bp respectively were obtained. Amplification products were sequenced and the sequence and phylogenetic analyses showed that genotype IV like was the most frequent in the samples belonging to this assemblage.

Keywords

Nonhuman Primate Spider Monkey Giardiasis Triose Phosphate Isomerase Hamadryas Baboon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the Spanish Ministerio de Ciencia e Innovación. Grants: AGL2007-62435/GAN and CGL2006-04343/BOS. The authors wish to thank veterinarians Eva Martínez from the zoo aquarium of Madrid, Miguel Casares, Cati Gerique, and Loles Carbonell from Bioparc Valencia, for their kindly help in collecting faecal samples from their respective centers. We also thank Dr. Blanca Simmons for language advice.

Supplementary material

436_2011_2281_MOESM1_ESM.doc (44 kb)
Online Resource 1 Intra-subassemblage substitutions for glutamate dehydrogenase (gdh) gene from assemblage A. Positions are numbered from the beginning of the reference sequence from GenBank (M84604) (DOC 43 kb)
436_2011_2281_MOESM2_ESM.doc (277 kb)
Online Resource 2 Intra-subassemblage substitutions for glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), and beta-giardin (bg) genes from assemblage B. Positions are numbered from the beginning of the reference sequences from GenBank (AY178756 for gdh, AY368163 for tpi, and AY072726 for bg) (DOC 277 kb)

References

  1. Abe N, Tanoue T, Noguchi E, Ohta G, Sakai H (2010) Molecular characterization of Giardia duodenalis isolates from domestic ferrets. Parasitol Res 106:733–736PubMedCrossRefGoogle Scholar
  2. Al-Mohammed HI (2010) Genotypes of Giardia intestinalis clinical isolates of gastrointestinal symptomatic Saudi children. Parasitol Res. doi: doi:10.1007/s00436-010-2033-5 PubMedGoogle Scholar
  3. Appelbee AJ, Frederick LM, Heitman TL, Olson ME (2003) Prevalence and genotyping of Giardia duodenalis from beef calves in Alberta, Canada. Vet Parasitol 112:289–294PubMedCrossRefGoogle Scholar
  4. Beck R, Sprong H, Bata I, Lucinger S, Pozio E, Cacciò SM (2011) Prevalence and molecular typing of Giardia spp. in captive mammals at the zoo of Zagreb, Croatia. Vet Parasitol 175:40–46PubMedCrossRefGoogle Scholar
  5. Cacciò SM, De Giacomo M, Pozio E (2002) Sequence analysis of the β-giardin gene and development of a PCR-RFLP assay to genotype Giardia duodenalis cysts from human fecal samples. Int J Parasitol 32:1023–1030PubMedCrossRefGoogle Scholar
  6. Cacciò SM, Beck R, Lalle M, Marinculic A, Pozio E (2008) Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol 38:1523–1531CrossRefGoogle Scholar
  7. Hopkins RM, Meloni BP, Groth DM, Wetheral JD, Reynoldson JA, Thompson RC (1997) Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality. J Parasitol 83:44–51PubMedCrossRefGoogle Scholar
  8. Itagaki T, Kinoshita S, Aoki M, Itoh N, Saeki H, Sato N, Uetsuki J, Izumiyama S, Yagita K, Endo T (2005) Genotyping of Giardia intestinalis from domestic and wild animals in Japan using glutamate dehydrogenase gene sequencing. Vet Parasitol 133:283–287PubMedCrossRefGoogle Scholar
  9. Kosuwin R, Putaporntip C, Pattanawong U, Jongwutiwes S (2010) Clonal diversity in Giardia duodenalis isolates from Thailand: evidences for intragenic recombination and purifying selection at the beta giardin locus. Gene 449:1–8PubMedCrossRefGoogle Scholar
  10. Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, Cacció SM (2005) Genetic heterogeneity at the β-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol 35:207–213PubMedCrossRefGoogle Scholar
  11. Lasek-Nesselquist E, Welch DM, Thompson RCA, Steuart RF, Sogin ML (2009) Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol 56:504–518PubMedCrossRefGoogle Scholar
  12. Lebbad M, Ankarklev J, Tellez A, Leiva B, Andersson JO, Svärd S (2008) Dominance of Giardia assemblage B in León, Nicaragua. Acta Trop 106:44–53PubMedCrossRefGoogle Scholar
  13. Lebbad M, Mattsson JG, Christensson B, Ljungström B, Backhans A, Anderson JO, Svärd S (2010) From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Vet Parasitol 168:231–239PubMedCrossRefGoogle Scholar
  14. Levecke B, Geldhof P, Clarebout E, Dorny P, Vercammen F, Cacciò S, Vercruysse J, Geurden T (2009) Molecular characterization of Giardia duodenalis in captive non-human primates reveals mixed assemblage A and B infections and novel polymorphisms. Int J Parasitol 39:1595–1601PubMedCrossRefGoogle Scholar
  15. Levine JA, Estevez EG (1983) Method for concentration of parasites from small amount of feces. J Clin Microbiol 18:786–788PubMedGoogle Scholar
  16. Monis PT, Caccio SM, Thompson RCA (2009) Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol 25:93–100PubMedCrossRefGoogle Scholar
  17. Plutzer J, Karanis P (2009) Rapid identification of Giardia duodenalis by loop-mediated isothermal amplification (LAMP) from faecal and environmental samples and comparative findings by PCR and real-time PCR methods. Parasitol Res 104:1527–1533PubMedCrossRefGoogle Scholar
  18. Read CM, Monis PT, Thompson RCA (2004) Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 4:125–130PubMedCrossRefGoogle Scholar
  19. Robertson LJ, Hermansen L, Gjerde BK, Strand E, Alvsvag JO, Langeland N (2006) Application of genotyping during an extensive outbreak of waterborne giardiasis in Bergen, Norway, during autumn and winter 2004. Appl Environ Microbiol 72:2212–2217PubMedCrossRefGoogle Scholar
  20. Sagebiel D, Weitzel T, Stark K, Leitmeyer K (2009) Giardiasis in kindergartens: prevalence study in Berlin, Germany, 2006. Parasitol Res 105:681–687PubMedCrossRefGoogle Scholar
  21. Savioli L, Smith H, Thompson A (2006) Giardia and Cryptosporidium join the “Neglected Diseases Initiative”. Trends Parasitol 22:203–208PubMedCrossRefGoogle Scholar
  22. Souza SL, Gennari SM, Richtzenhain LJ, Pena HF, Funada MR, Cortez A, Gregori F, Soares RM (2007) Molecular identification of Giardia duodenalis isolates from humans, dogs, cats and cattle from the state of São Paulo, Brazil, by sequence analysis of fragments of glutamate dehydrogenase (gdh) coding gene. Vet Parasitol 149:268–274CrossRefGoogle Scholar
  23. Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, Schantz PM, Das P, Lal AA, Xiao L (2003) Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg Infect Dis 9:1444–1452PubMedGoogle Scholar
  24. Sulaiman IM, Jiang J, Singh A, Xiao L (2004) Distribution of Giardia duodenalis genotypes and subgenotypes in raw urban wastewater in Milwaukee, Wisconsin. Appl Environ Microbiol 70:3776–3780PubMedCrossRefGoogle Scholar
  25. Sprong H, Caccio SM, van der Giessen JWB (2009) Identification of zoonotic genotypes of Giardia duodenalis. Plos Neglect Trop D 3:1–12Google Scholar
  26. Thompson RCA, Palmer CS, O'Handley R (2008) The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet J 177:18–25PubMedCrossRefGoogle Scholar
  27. Upcroft JA, Krauer KG, Upcroft P (2010) Chromosome sequence maps of the Giardia lamblia assemblage A isolate WB. Trends Parasitol 26:484–491PubMedCrossRefGoogle Scholar
  28. Van der Giessen JW, de Vries A, Roos M, Wielinga P, Kortbeek LM, Mank TG (2006) Genotyping of Giardia in Dutch patients and animals: a phylogenetic analysis of human and animal isolates. Int J Parasitol 36:849–858PubMedCrossRefGoogle Scholar
  29. Volotao ACC, Souza Júnior JC, Grassini C, Peralta JM, Fernandes O (2008) Genotyping of Giardia duodenalis from Southern Brown Howler Monkeys (Alouatta clamitans) from Brazil. Vet Parasitol 158:133–137PubMedCrossRefGoogle Scholar
  30. Wielinga CM, Thompson RCA (2007) Comparative evaluation of Giardia duodenalis sequence data. Parasitology 134:1795–1821PubMedCrossRefGoogle Scholar
  31. Winkworth CL, Learmonth JJ, Matthaei CD, Townsend CR (2008) Molecular characterization of Giardia isolates from calves and humans in a region in which dairy farming has recently intensified. Appl Environ Microbiol 74:5100–5105PubMedCrossRefGoogle Scholar
  32. Yee J, Dennis PP (1992) Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. J Biol Chem 267:7539–7544PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rafael Alberto Martínez-Díaz
    • 1
    Email author
  • José Sansano-Maestre
    • 2
  • María del Carmen Martínez-Herrero
    • 2
  • Francisco Ponce-Gordo
    • 3
  • María Teresa Gómez-Muñoz
    • 4
  1. 1.Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Producción Animal, Sanidad Animal y Ciencia y Tecnología de los Alimentos, Facultad de VeterinariaUniversidad CEU Cardenal HerreraValenciaSpain
  3. 3.Departamento de Parasitología, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  4. 4.Departamento de Sanidad Animal, Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain

Personalised recommendations