Parasitology Research

, Volume 108, Issue 4, pp 781–792 | Cite as

Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea

  • Serena Cavallero
  • Steven A. Nadler
  • Lia Paggi
  • Nelio B. Barros
  • Stefano D’Amelio
Original Paper


In the present study, 407 anisakid nematodes, collected from 11 different species of cetaceans of the families Delphinidae, Kogiidae, Physeteridae, and Ziphiidae, from the southeastern Atlantic coasts of USA, the Gulf of Mexico, and the Caribbean Sea, were examined morphologically and genetically characterized by PCR restriction fragment length polymorphism to identify them to species level, assess their relative frequencies in definitive hosts, and determine any host preference. Sequence data from nuclear ribosomal internal transcribed spacer and mitochondrial cox2 genes were analysed by maximum parsimony and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. The results revealed a highly diverse ascaridoid community. Seven Anisakis species and Pseudoterranova species were recovered as adult parasites. Larval forms of Contracaecum multipapillatum were also found in a coastal population of bottlenose dolphins. The phylogenetic trees obtained from the combined dataset (and most individual datasets) revealed the existence of distinct clades, the first including species of the Anisakis simplex complex (A. simplex s.s., Anisakis pegreffii, A. simplex C), (Anisakis nascettii, Anisakis ziphidarum) and the second including Pseudoterranova ceticola ((Anisakis paggiae, (Anisakis physeteris, Anisakis brevispiculata)). This finding, excluding the relationship of P. ceticola, is consistent with the morphology of adult and larval specimens. Considering the presence versus absence of an intestinal cecum, the relationship of P. ceticola with the members of the second clade of Anisakis appears inconsistent with morphological evidences but consistent with host preference. The position of Anisakis typica as the sister group to the two main anisakid clades indicates that it represents a third distinct lineage.


Internal Transcribe Spacer Maximum Parsimony Bottlenose Dolphin Sperm Whale Beaked Whale 



This paper is dedicated to the memory of our dear friend and colleague Nelio B. Barros, whose essential contribution made this study possible. We wish to thank also all the colleagues who collaborated with Nelio in the collection of samples.


  1. Barros NB, Ostrom PH, Stricker CA, Wells RS (2010) Stable isotopes differentiate bottlenose dolphins off west-central Florida. Mar Mammal Sci 26:324–336CrossRefGoogle Scholar
  2. Berland B (1961) Nematodes from some Norwegian marine fishes. Sarsia 2:1–50Google Scholar
  3. Brooks DR (1979) Testing the context and extent of host-parasite coevolution. Syst Zool 28:299–307CrossRefGoogle Scholar
  4. Brooks DR, McLennan DA (1991) Phylogeny, ecology, and behaviour. A research program in comparative biology. University of Chicago Press, ChicagoGoogle Scholar
  5. Colom-Llavina MM, Mignucci-Giannoni AA, Mattiucci S, Paoletti M, Nascetti G, Williams EHJr (2009) Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes. Parasitol Res 5:1239–1252CrossRefGoogle Scholar
  6. D’Amelio S, Mathiopoulos K, Santos CP, Pugachev ON, Webb SC, Picanço M, Paggi L (2000) Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase chain reaction-based restriction fragment length polymorphism. Int J Parasitol 30:223–226PubMedCrossRefGoogle Scholar
  7. D'Amelio S, Barros NB, Ingrosso S, Fauquier DA, Russo R, Paggi L (2007) Genetic characterization of members of the genus Contracaecum (Nematoda: Anisakidae) from fish-eating birds from west-central Florida, USA, with evidence of new species. Parasitology 134:1041–1051PubMedCrossRefGoogle Scholar
  8. Deardorff TL, Overstreet RM (1981) Terranova ceticola n. sp. (Nematoda: Anisakidae) from the dwarf sperm whale, Kogia simus (Owen), in the Gulf of Mexico. Syst Parasitol 3:25–28CrossRefGoogle Scholar
  9. Eernisse DJ, Kluge AG (1993) Taxonomic congruence versus total evidence, and the phylogeny of amniotes inferred from fossils, molecules and morphology. Mol Biol Evol 10:1170–1195PubMedGoogle Scholar
  10. Fagerholm HP (1991) Systematic implications of male caudal morphology in ascaridoid nematode parasites. Syst Parasitol 19:215–228CrossRefGoogle Scholar
  11. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  12. Felsestein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  13. Forrester DJ (1992) Whales and dolphins in: parasites and diseases of wild mammals in Florida. University Press of Florida, Gainesville, pp 218–250Google Scholar
  14. Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool (Mol Dev Evol) 304B:64–74CrossRefGoogle Scholar
  15. Gibson DI (1983) The systematics of ascaridoid nematodes—a current assessment. In: Stone AR, Platt HM, Khalil LF (eds) Concepts in nematode systematics. Academic, New York, pp 321–338Google Scholar
  16. González Solís D, Vidal-Martínez VM, Antochiw-Alonso DM, Ortega-Argueta A (2006) Anisakid nematodes from stranded pygmy sperm whales, Kogia breviceps (Kogiidae), in three localities of the Yucatan Peninsula, Mexico. J Parasitol 92:1120–1122CrossRefGoogle Scholar
  17. Hafner MS, Page RDM (1995) Molecular phylogenies and host-parasite cospeciation: gophers and lice as a model system. Philos Trans R Soc Lond B Biol Sci 349:77–83PubMedCrossRefGoogle Scholar
  18. Iglesias R, D’Amelio S, Ingrosso S, Farjallah S, Martinez-Cedeira JA, Garzia-Estevez JM (2008) Molecular and morphological evidence of a new taxon of Anisakis Dujardin, 1845 (Nematoda, Anisakidae) from the Blainville’s beaked whale (Mesoplodon densirostris). J Helminthol 82:305–308PubMedCrossRefGoogle Scholar
  19. Kluge AG (1998) Total evidence or taxonomic congruence: CLADISTICS or consensus classification. Cladistics 14:151–158CrossRefGoogle Scholar
  20. Loytynoja A, Milinkovitch MC (2003) A hidden Markov model for progressive multiple alignment. Bioinformatics 19:1505–1513PubMedCrossRefGoogle Scholar
  21. Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematic of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Adv Parasitol 66:41–148Google Scholar
  22. Mattiucci S, Nascetti G, Dailey M, Webb SC, BarrosNB CR, Bullini L (2005) Evidence for a new species of Anisakis Dujardin, 1845: morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Syst Parasitol 61:157–171PubMedCrossRefGoogle Scholar
  23. Mattiucci S, Paoletti M, Webb SC (2009) Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst Parasitol 74:199–217PubMedCrossRefGoogle Scholar
  24. Mignucci-Giannoni A, Hoberg EP, Siegel-Causey D, Williams EHJr (1998) Metazoan parasites and other symbionts of cetaceans in the Caribbean. J Parasitol 84:939–946PubMedCrossRefGoogle Scholar
  25. Miller MA, Holder MT, Vos R et al. The CIPRES portals. CIPRES. Accessed 4 August 2009 (archived by WebCite(r) at
  26. Morales-Vela B, Olivera-Gomez LD (1993) Varamiento de calderones Globicephala macrorhynchus (Cetacea: Delphinidae) en la isla de Cozumel, Quintana Roo. An Inst Biol Univ Nac Auton Mex Ser Zool 64:177–180Google Scholar
  27. Mozgovoi AA (1953) [Ascarids of animals and man and diseases caused by them]. Osn. Nemat., 2(2). Izd Akad Nauk SSSR, MoscowGoogle Scholar
  28. Nadler SA, Hudspeth DSS (1998) Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): implications for morphological evolution and classification. Mol Phylogenet Evol 10:221–236PubMedCrossRefGoogle Scholar
  29. Nadler SA, Hudspeth DSS (2000) Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol 86:380–393PubMedGoogle Scholar
  30. Nadler SA, D'Amelio S, Fagerholm HP, Berland B, Paggi L (2000) Phylogenetic relationships among species of Contracaecum Railliet & Henry, 1912 and Phocascaris Host, 1932 (Nematoda: Ascaridoidea) based on nuclear rDNA sequence data. Parasitology 121:455–463PubMedCrossRefGoogle Scholar
  31. Nadler S, D'Amelio S, Dailey MD, Paggi L, Siu S, Sakanari JA (2005) Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from Northern Pacific marine mammals. J Parasitol 95:1423–1429Google Scholar
  32. Paggi L, Nascetti G, Webb SC, Mattiucci S, Cianchi R, Bullini L (1998) A new species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae) from beaked whale (Ziphiidae): allozyme and morphological evidence. Syst Parasitol 40:161–174CrossRefGoogle Scholar
  33. Pontes T, D'Amelio S, Costa G, Paggi L (2005) Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species. J Parasitol 91:1430–1434PubMedCrossRefGoogle Scholar
  34. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  35. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  36. Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  37. Valentini A, Mattiucci S, Bondanelli P, Webb SC, Mignucci-Giannone AA, Colom-Llavina MM, Nascetti G (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J Parasitol 92:156–165PubMedCrossRefGoogle Scholar
  38. Zam SG, Caldwell DK, Caldwell MC (1971) Some endoparasites from small odontocete cetaceans collected in Florida and Georgia. Cetology 2:1–11Google Scholar
  39. Zhu X, D’Amelio S, Paggi L, Gasser RB (2000) Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (Nematoda: Ascaridoidea: Anisakidae). Parasitol Res 86:677–683PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Serena Cavallero
    • 1
  • Steven A. Nadler
    • 2
  • Lia Paggi
    • 1
  • Nelio B. Barros
    • 3
  • Stefano D’Amelio
    • 1
  1. 1.Department of Public Health and Infectious Diseases, Section of ParasitologySapienza University of RomeRomeItaly
  2. 2.Department of NematologyUniversity of CaliforniaDavisUSA
  3. 3.Biology DepartmentPortland State UniversityPortlandUSA

Personalised recommendations