Advertisement

Parasitology Research

, Volume 109, Issue 1, pp 37–45 | Cite as

Anthelmintic activity of botanical extracts against sheep gastrointestinal nematodes, Haemonchus contortus

  • Chinnaperumal Kamaraj
  • Abdul Abdul RahumanEmail author
  • Gandhi Elango
  • Asokan Bagavan
  • Abdul Abduz Zahir
Original Paper

Abstract

The source of chemical anthelmintics (levamisole, flubendazole, and thiabendazole) had limited the success of gastrointestinal nematodiasis control in sheep and goats and thus awakened interest in the study of medicinal plant extracts as alternative sources of anthelmintics. The egg hatching and larvicidal effect of indigenous plant extracts were investigated against the sheep parasite, Haemonchus contortus. The purpose of the present study was to assess the efficacy of leaf, bark, and seed ethyl acetate, acetone and methanol extracts of Andrographis paniculata (Burm.f.) Wall. ex Nees., Anisomeles malabarica (L.) R. Br., Annona squamosa L., Datura metel L., and Solanum torvum Swartz were tested against the parasitic nematode of small ruminants H. contortus using egg hatch assay (EHA) and larval development assay (LDA). The assays were run in 24-well cell culture plates at room temperature with five replicates. All plant extracts showed moderate parasitic effects after 48 and exposure for egg hatching and LDA, respectively; however, 100% egg hatching and larvicidal inhibition were found in the methanol extracts of A. paniculata, A. squamosa, D. metel, and S. torvum at 25 mg/ml and the effect was similar to positive control of Albendazole (0.075 mg/ml) and Ivermectin (0.025mg/ml) against H. contortus, respectively. The EHA result showed the ED50 of methanol extracts of A. paniculata and D. metel, which were 2.90 and 3.08 mg/ml, and in larval development assay, the ED50 was 4.26and 3.86 mg/ml, respectively. These effects remain to be confirmed through in vivo studies.

Keywords

Methanol Extract Larval Development Ivermectin Albendazole Ethyl Acetate Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to C. Abdul Hakeem College Management, Dr. S. Mohammed Yousuff, Principal, Dr. K. Abdul Subhan, Associate Professor and HOD of Zoology Department, and Dr. Sait Sahul Hameed, Associate Professor in Zoology, for the facilities and support.The authors wish to thank Dr. A. Sangaran, Department of Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India for identification of parasite.

References

  1. Allonby EW, Urquhart M (1975) The epidemiology and pathogenic significance of haemonchosis in Merino Folk in Eastern Africa. Vet Parasitol 1:1001–1007CrossRefGoogle Scholar
  2. Alonso-Díaz MA, Torres-Acosta JF, Sandoval-Castro CA, Aguilar-Caballero AJ, Hoste H (2008) In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Vet Parasitol 153:313–319PubMedCrossRefGoogle Scholar
  3. Asase A, Oteng-Yeboah AA, Odamtten GT, Simmonds MSJ (2005) Ethnobotanical study of some Ghanaian anti-malarial plants. J Ethnopharmacol 99:273–279PubMedCrossRefGoogle Scholar
  4. Assis LM, Bevilaqua CML, Morais SM, Vieira LS, Costa CTC, Souza JAL (2003) Ovicidal and larvicidal activity in vitro of Spigelia anthlmia Linn. Extracts on Haemonchus contortus. Vet Parasitol 117:43–49PubMedCrossRefGoogle Scholar
  5. Barrau E, Fabre N, Fouraste I, Hoste H (2005) Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitol 131:531–538CrossRefGoogle Scholar
  6. Bizimenyera ES, Githiori JB, Eloff JN, Swan GE (2006) In-vitro activity of Peltophourum africanum Sond. (Fabaceae) extracts on the egg hatching and larval development of the parasitic nematode Trichostrongylus colubrifrmis. Vet Parasitol 142(3–4):336–343PubMedCrossRefGoogle Scholar
  7. Bonde K (2001) The genus Datura: from research subject to powerful hallucinogen. Journal of Ethanobotanical Leaflet 29:335–336 http://www.lycaeum.org/leda/docs/16212.shtml?ID=16212 Google Scholar
  8. Coles GC, Bauer C, Borgsteede F, Geerts S, Klei TR, Taylor MA, Waller PJ (1992) World association for advancement in veterinary parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 44:35–43PubMedCrossRefGoogle Scholar
  9. Costa CTC, Bevilaqua CML, Camurca-vasconcelos ALF, Maciel MV, Morais SM, Castor CMS, Braga RR, Oliverira LMB (2008) In vitro ovicidal and larvacidal activity of Azadiracha indica extracts on Haemonchus contrtus. Small RumRes 74:284–287CrossRefGoogle Scholar
  10. Dua VK, Ojha VP, Roy R, Joshi BC, Valecha N, Usha Devi C, Bhatnagar MC, Sharma VP, Subbarao SK (2004) Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata. J Ethnopharmacol 95:247–251PubMedCrossRefGoogle Scholar
  11. Dua VK, Verma G, Dash AP (2009) In vitro antiprotozoal activity of some xanthones isolated from the roots of Andrographis paniculata. Phytother Res 23:126–128PubMedCrossRefGoogle Scholar
  12. Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007) In vitro and in vivo anthelmintics activity of crude extracts of Coriandrum sativum against Haemonchus contortus. J Ethnopharmacol 110(3):428–433PubMedCrossRefGoogle Scholar
  13. Elango G, Rahuman AA, Bagavan A, Kamaraj C, Zahir AA, Venkatesan C (2009) Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Parasitol Res 104:1381–1388PubMedCrossRefGoogle Scholar
  14. Geary TM, Sangster NC, Thompson DP (1999) Frontiers in anthelmintic pharmacology. Vet Parasitol 84:275–295PubMedCrossRefGoogle Scholar
  15. Geethangili M, Rao YK, Fang SH, Tzeng YM (2008) Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in jurkat cells. Phytother Res 22:1336–1341PubMedCrossRefGoogle Scholar
  16. Githiori JB, Athansiadou S, Thamsborg SM (2006) Use of plants novel approaches for control of gastro-intestinal helminths in livestock with emphasis on small ruminants. Vet Parasitol 139:308–320PubMedCrossRefGoogle Scholar
  17. Goswami BK, Vijayalakshmi K (1987) Studies on the effect of some plant and non-edible oil seed cake extracts on larval hatching of Meloidogyne incognita. Assam Agri Uni 8:62–64Google Scholar
  18. Herd R (1996) Impactos ambientais associados aos compostos endectocidas. In: Padilha T (ed) Controle dosnematódeos gastrintestinais em ruminantes. EMBRAPA-CNPGL, Coronel Pacheco, pp 95–111Google Scholar
  19. Hördegen P, Cabaret J, Hertzberg H, Langhans W, Maurer V (2006) In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyl-tetrazolium reduction assay. J Ethnopharmacol 108:85–89PubMedCrossRefGoogle Scholar
  20. Hounzangbe-Adote FI, Mountairou K, Hoste H (2005) In-vitro effects of four tropical plants on three life cycle stages of parasitic nematode Haemonchus contortus. Res Vet Sci 78:155–160PubMedCrossRefGoogle Scholar
  21. Hubert J, Kerboeuf D (1984) A new method for culture of larvae used in diagnosis of ruminant gastrointestinal strongylosis: comparison with faecal cultures. Can J Com Med 48:63–71Google Scholar
  22. Kamaraj C, Rahuman AA (2010) Efficacy of anthelmintic properties of medicinal plant extracts against Haemonchus contortus. Res Vet Sci. doi: 10.1016/j.rvsc.2010.09.018 PubMedGoogle Scholar
  23. Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104:1163–1171PubMedCrossRefGoogle Scholar
  24. Kamaraj C, Rahuman AA, Bagavan A, Mohamed MJ, Elango G, Rajakumar G, Zahir AA, Santhoshkumar T, Marimuthu S (2010) Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida). Parasitol Res 106:1071–1077PubMedCrossRefGoogle Scholar
  25. Kotze AC, O’Grady J, Emms J, Toovey AF, Hughes S, Jessop P, Bennel M, Vercoe PE, Revell DK (2009) Exploring the anthelmintic properties of Australian native shrubs with respect to their potential role in livestock grazing systems. Parasitology 136:1065–1080PubMedCrossRefGoogle Scholar
  26. Kusirisin W, Jaikang C, Chaiyasut C, Narongchai P (2009) Effect of polyphenolic compounds from Solanum torvum on plasma lipid peroxidation, superoxide anion and cytochrome P450 2E1 in human liver microsomes. Med Chem 5:583–588PubMedCrossRefGoogle Scholar
  27. Lacey E, Redwin JM, Gill JH, Demargheriti VM, Waller PJ (1990) A larval development assay for the simultaneous detection of broad spectrum anthelmintic resistance. In: Boray JC, Martin PJ, Roush RT (eds) Resistance of parasites to antiparasitic drugs. MSD Agvet, Rajway, pp 177–184Google Scholar
  28. Liu YT, Wang F, Wang GX, Han J, Wang Y, Wang YH (2010) In vivo anthelmintic activity of crude extracts of Radix angelicae pubescentis, Fructus bruceae, Caulis spatholobi, Semen aesculi, and Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 106(5):1233–1239PubMedCrossRefGoogle Scholar
  29. López-Aroche U, Salinas-Sánchez DO, Mendoza de Gives P, López-Arellano ME, Liébano-Hernández E, Valladares-Cisneros G, Arias-Ataide DM, Hernández-Velázquez V (2008) In vitro nematicidal effects of medicinal plants from the Sierra de Huautla, Biosphere Reserve, Morelos, Mexico against Haemonchus contortus infective larvae. J Helminthol 82:25–31PubMedCrossRefGoogle Scholar
  30. Maciel MV, Morais SM, Bevilaqua CM, Camurça-Vasconcelos AL, Costa CT, Castro CM (2006) Ovicidal and larvicidal activity of Melia azedarach extracts on Haemonchus contortus. Vet Parasitol 140:98–104PubMedCrossRefGoogle Scholar
  31. Maphosa V, Masika PJ, Bizimenyera ES, Eloff JN (2010) In vitro anthelminthic activity of crude aqueous extracts of Aloe ferox, Leonotis leonurus and Elephantorrhiza elephantina against Haemonchus contortus. Trop Anim Health Prod 42(2):301–307PubMedCrossRefGoogle Scholar
  32. McCorkle M, Mathias E, van Schillhorn Veen TW (1996) Ethnoveterinary research and development. IT studies in indigenous knowledge and development intermediate technology publications. Southampton Row, London, pp 1–23Google Scholar
  33. Melo ACFL, Reis IF, Bevilaqua CML, Vieira LS, Echevarria FAM, Melo LM (2003) Nemato’ deos resistentes a anti-helmı’nticos emrebanhos de ovinos e caprinos no estado do Ceara, Brasil. Cienc Rural 33:339–344CrossRefGoogle Scholar
  34. Mishra K, Dash AP, Swain BK, Dey N (2009) Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J 8:26–34PubMedCrossRefGoogle Scholar
  35. Murugan K, Babu R, Sivaramakrishnan S (1999) Toxic effect of plants on Spodoptera litura Fab. Insect Env 4:135Google Scholar
  36. Nik AN, Rahman N, Furuta T, Kojima S, Takane K, Mohd MA (1999) Antimalarial activity of extracts of Malaysian medicinal plants. J Ethnopharmacol 64:249–254CrossRefGoogle Scholar
  37. Oduor-Owino P (1993) Effects of aldicarb, Datura stramonium, Datura metel and Tagetes minuta on the pathogenicity of root-knot nematodes in Kenya. Crop Prot 12:315–317CrossRefGoogle Scholar
  38. Oliveira LM, Bevilaqua CM, Costa CT, Macedo IT, Barros RS, Rodrigues AC, Camurça-Vasconcelos AL, Morais SM, Lima YC, Vieira LS, Navarro AM (2009) Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Vet Parasitol 159:55–59PubMedCrossRefGoogle Scholar
  39. Pardhasaradhi BV, Reddy M, Ali AM, Kumari AL, Khar A (2005) Differential cytotoxic effects of Annona squamosa seed extracts on human tumour cell lines: role of reactive oxygen species and glutathione. J Biosci 302:237–244CrossRefGoogle Scholar
  40. Parrotta JA (2001) Healing plants of India. CABI Publishing, Wallingford, p 917Google Scholar
  41. Raghavendra K, Singh SP, Sarala K, Subbarao DAP (2009) Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J Med Res 130:74–77PubMedGoogle Scholar
  42. Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102:981–988PubMedCrossRefGoogle Scholar
  43. Rates SMK (2001) Plants as source drugs. Toxicon 39:603–613PubMedCrossRefGoogle Scholar
  44. Roberts FHS, O’Sullivan PJ (1950) Methods for egg counts and larval cultures for strongyles infecting the gastrointestinal tract of cattle. Aus J Agri Res 1:99–102CrossRefGoogle Scholar
  45. Schoenian S (2003) Integrated parasite management. Maryland Cooperative extension. Maryland Small Ruminant  www.sheepandgoat.com/articles/IPM.html.
  46. Sharma RN, Bhosale AS, Joshi VN, Hebbalkar DS, Tungikar VB, Gupta AS, Patwardhan SA (1981) Lavandula gibsonii: a plant with insectistatic potential. Phytoparasit 9:101–109CrossRefGoogle Scholar
  47. Singha PK, Roy S, Dey S (2007) Protective activity of andrographolide and arabinogalactan proteins from Andrographis paniculata Nees. against ethanol-induced toxicity in mice. J Ethnopharmacol 111:13–21PubMedCrossRefGoogle Scholar
  48. Souza MMC, Bevilaqua CML, Morais SM, Costa CTC, Silva ARA, Filho RB (2008) Anthelmintic acetogenin from Annona squamosa L. Seeds. An Acad Brasi Cienc 80:271–277CrossRefGoogle Scholar
  49. Srinivasan P, Sudha A, Bharathajothi P, Rameshthangam P, Manikandan R, Arulvasu C (2010) Effects of anti-inflammatory and anti-pyretic activity of Anisomeles malabarica R.BR. J Pharm Res 7:1598–1601Google Scholar
  50. Sugati SS, Sudjaswadi W, Rini S, Wien W (1999) Andrographis paniculata (Burm.f.) Wallich ex Nees. In: de Padua LS, Bunyapraphatsara N, Lemmens RHMJ (eds) PROSEA—Plant Resources of Southeast Asia No. 12(1). Medicinal and Poisonous Plants 1. Backhuys Publishers, Leiden, pp 119–123Google Scholar
  51. Tadesse D, Eguale T, Giday M, Mussa A (2009) Ovicidal and larvicidal activity of crude extracts of Maesa lanceolata and Plectranthus punctatus against Haemonchus contortus. J Ethnopharmacol 122:240–244PubMedCrossRefGoogle Scholar
  52. Vieira LS, Cavalcante ACR, Pereira MF, Dantas LBA, Ximenes LJF (1999) Evaluation of anthelmintic efficacy of plants available in Ceará State, North-east Brazil, for the control of goat gastrointestinal nematodes. Rev Méd Vét 150:447–452Google Scholar
  53. Wu TS, Chern HJ, Damu AG, Kuo PC, Su CR, Lee EJ, Teng CM (2008) Flavonoids and ent-labdane diterpenoids from Andrographis paniculata and their antiplatelet aggregatory and vasorelaxing effects. J Asian Nat Prod Res 10:17–24PubMedCrossRefGoogle Scholar
  54. Zahir AA, Rahuman AA, Kamaraj C, Bagavan A, Elango G, Sangaran A, Senthil Kumar B (2009) Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 105(2):453–461PubMedCrossRefGoogle Scholar
  55. Zaridah MZ, Idid SZ, Omar AW, Khozirah S (2001) In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi. J Ethnopharmacol 78:79–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Chinnaperumal Kamaraj
    • 1
  • Abdul Abdul Rahuman
    • 1
    Email author
  • Gandhi Elango
    • 1
  • Asokan Bagavan
    • 1
  • Abdul Abduz Zahir
    • 1
  1. 1.Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of ZoologyC. Abdul Hakeem College, MelvisharamVelloreIndia

Personalised recommendations