Parasitology Research

, Volume 108, Issue 6, pp 1541–1549 | Cite as

Evaluation of green synthesized silver nanoparticles against parasites

  • Sampath Marimuthu
  • Abdul Abdul Rahuman
  • Govindasamy Rajakumar
  • Thirunavukkarasu Santhoshkumar
  • Arivarasan Vishnu Kirthi
  • Chidambaram Jayaseelan
  • Asokan Bagavan
  • Abdul Abduz Zahir
  • Gandhi Elango
  • Chinnaperumal Kamaraj
Original Paper


Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the antiparasitic activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Mimosa pudica Gaertn (Mimosaceae) against the larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae), and Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Parasite larvae were exposed to varying concentrations of aqueous extract of M. pudica and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of M. pudica and the formation of nanoparticles was observed within 6 h. The results recorded from UV–vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus (LC50 = 13.90, 11.73, and 8.98 mg/L, r 2 = 0.411, 0.286, and 0.479), respectively. This is the first report on antiparasitic activity of the plant extract and synthesized AgNPs.


Malaria Silver Nanoparticles Leaf Extract Mosquito Larva Larvicidal Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267Google Scholar
  2. Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490PubMedCrossRefGoogle Scholar
  3. Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera: Culicidae). Parasitol Res 99:466–472PubMedCrossRefGoogle Scholar
  4. Ankamwar B, Damle C, Absar A, Mural S (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 10:1665–1671CrossRefGoogle Scholar
  5. Asharani PV, Wu YL, Gong ZY, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8CrossRefGoogle Scholar
  6. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–396PubMedCrossRefGoogle Scholar
  7. Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139PubMedCrossRefGoogle Scholar
  8. Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in northeastern Tanzania: alternative approaches. Physiotherapy 89:743–749CrossRefGoogle Scholar
  9. Chen L, Evans JR (2009) Arched structures created by colloidal droplets as they dry. Langmuir 25:11299–11301PubMedCrossRefGoogle Scholar
  10. Das PK, Pani SP, Krishnamoorthy K (2000) Prospects of elimination of lymphatic filariasis in India. ICMR Bulletin 32(5–6):41–54Google Scholar
  11. Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Digest J Nanomater Biostruct 4:537–543Google Scholar
  12. Duran N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 13:3–8Google Scholar
  13. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman JM (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 29:3–6Google Scholar
  14. FAO (2004) Ticks: acaricide resistance: diagnosis management and prevention in: guidelines resistance management and integrated parasite control in ruminants. FAO Animal Production and Health Division, RomeGoogle Scholar
  15. Fernandes FF, Freitas EPS (2007) Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 147(1–2):150–154CrossRefGoogle Scholar
  16. Fernandes FF, Freitas EPS, Costa AC, Silva IG (2005) Larvicidal potential of Sapindus saponaria to control the cattle tick Boophilus microplus. Pesqui Agropecu Bras 40:1243–1245CrossRefGoogle Scholar
  17. Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, Cambridge, UK. ISBN 052108041X. OCLC 174198382Google Scholar
  18. Ghosh S, Sharma AK, Kumar S, Tiwari SS, Rastogi S, Srivastava S, Singh M, Kumar R, Paul S, Ray DD, Rawat AK (2010) In vitro and in vivo efficacy of Acorus calamus extract against Rhipicephalus (Boophilus) microplus. Parasitol Res. doi: 10.1007/s00436-010-2070-0 Google Scholar
  19. Graf JF, Gogolewski R, Leach BN (2004) Tick control: an industry point of view. Parasitology 129:S247–S442CrossRefGoogle Scholar
  20. Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978PubMedCrossRefGoogle Scholar
  21. Hay SI, Gething PW, Snow RW (2010) India's invisible malaria burden. Lancet 376(9754):1716–1717PubMedCrossRefGoogle Scholar
  22. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  23. Kager PA (2002) Malaria control: constraints and opportunities. Trop Med Int Health 7:1042–1046PubMedCrossRefGoogle Scholar
  24. Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171PubMedCrossRefGoogle Scholar
  25. Kamaraj C, Rahuman AA, Mahapatra A, Bagavan A, Elango G (2010) Insecticidal and larvicidal activities of medicinal plant extracts against mosquitoes. Parasitol Res 107(6):1337–1349PubMedCrossRefGoogle Scholar
  26. Khandelwal N, Abhijeet S, Devendra J, Upadhyay MK, Verma HN (2010) Green synthesis of silver nanoparticles using Argimone mexicana leaf extract and evaluation of their antimicrobial activities. Digest J Nanomater Biostruct 5:483–489Google Scholar
  27. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  28. Kundu S, Mandal M, Ghosh SK, Pal T (2004) Photochemical deposition of SERS active silver nanoparticles on silica gel. J Photochem Photobiol A Chem 162:625–663CrossRefGoogle Scholar
  29. Lobstein A, Weniger B, Um BH, Steinmetz M, Declercq L, Anton R (2002) 4"-hydroxy-maysin and cassiaoccidentalin B, two unusual C-glycosylflavones from Mimosa pudica (Mimosaceae). Biochem Syst Ecol 30:375–377CrossRefGoogle Scholar
  30. Lozoya M, Lozaya X (1989) Pharmacological properties in vitro of various extracts of Mimosa pudica Linn. Tepescohuite Arch Invest Mex, pp 87–93Google Scholar
  31. Martinez-Velazquez M, Castillo-Herrera GA, Rosario-Cruz R, Flores-Fernandez JM, Lopez-Ramirez J, Hernandez-Gutierrez R, Del Lugo-Cervantes Carmen E (2010) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res. doi: 10.1007/s00436-010-2069-6 PubMedGoogle Scholar
  32. Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95(5):363–365PubMedCrossRefGoogle Scholar
  33. Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (Leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461PubMedCrossRefGoogle Scholar
  34. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  35. Moretti MDL, Sanna-Passino G, Demontis S, Bazzoni E (2002) Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech 13:1–11Google Scholar
  36. Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L (2008) Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87(2):127–137PubMedCrossRefGoogle Scholar
  37. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotech 19:075103CrossRefGoogle Scholar
  38. Nathan SS, Kalaivani K, Sehoon K (2006) Effects of Dysoxylum malabaricum Bedd. (Meliaceae) extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 97:2077–2083CrossRefGoogle Scholar
  39. Parashar UK, Saxenaa PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Biostruct 4:159–166Google Scholar
  40. Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71(5):553–555PubMedCrossRefGoogle Scholar
  41. Rahuman AA, Bagavan A, Kamaraj C, Saravanan E, Zahir AA, Elango G (2009a) Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(6):1365–1372PubMedCrossRefGoogle Scholar
  42. Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009b) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(3):637–643PubMedCrossRefGoogle Scholar
  43. Restivo A, Brard L, Granai CO, Swamy N (2005) Antiproliferative effect of mimosine in ovarian cancer. J Clin Oncol 23:3200Google Scholar
  44. Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111PubMedCrossRefGoogle Scholar
  45. Shankar SS, Rai A, Ahmad A, Sastry MJ (2004) Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J Colloid Interface Sci 275:496–502PubMedCrossRefGoogle Scholar
  46. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84PubMedCrossRefGoogle Scholar
  47. SPSS (2007) SPSS for Windows, version 16.0. Release 16.0.0 Chicago, IL, USAGoogle Scholar
  48. Turney K, Drake TJ, Smith JE, Tan W, Harriso WW (2004) Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Commun Mass Spectrom 18:2367–2374PubMedCrossRefGoogle Scholar
  49. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235PubMedCrossRefGoogle Scholar
  50. Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80: 7051–7055Google Scholar
  51. WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/96.1:69Google Scholar
  52. WHO (2004) First meeting of the Regional Technical Advisory Group on malaria, Manesar, Haryana, India. SEA-MAL 239:1–38Google Scholar
  53. WHO (2005) Resolution WHA. 58.2. Malaria control. In: Fifty-eight World Health Assembly, Resolutions and Decisions Annex. GenevaGoogle Scholar
  54. Xu H, Käll M (2002) Morphology effects on the optical properties of silver nanoparticles. J Nano and Nanotech 4:254–259Google Scholar
  55. Yaicharoen R, Kiatfuengfoo R, Chareonviriyaphap T, Rongnoparut P (2005) Characterization of deltamethrin resistance in field populations of Aedes aegypti in Thailand. J Vector Ecol 30:144–150PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sampath Marimuthu
    • 1
  • Abdul Abdul Rahuman
    • 1
  • Govindasamy Rajakumar
    • 1
  • Thirunavukkarasu Santhoshkumar
    • 1
  • Arivarasan Vishnu Kirthi
    • 1
  • Chidambaram Jayaseelan
    • 1
  • Asokan Bagavan
    • 1
  • Abdul Abduz Zahir
    • 1
  • Gandhi Elango
    • 1
  • Chinnaperumal Kamaraj
    • 1
  1. 1.Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of ZoologyC.Abdul Hakeem CollegeVellore DistrictIndia

Personalised recommendations