Advertisement

Parasitology Research

, Volume 108, Issue 5, pp 1153–1161 | Cite as

Small subunit ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1 gene sequences of 21 strains of the parasitic scuticociliate Miamiensis avidus (Ciliophora, Scuticociliatia)

  • Sung-Ju Jung
  • Eun-Young Im
  • Michaela C. Strüder-Kypke
  • Shin-Ichi Kitamura
  • Patrick T. K. WooEmail author
Original Paper

Abstract

The scuticociliate Miamiensis avidus is a histophagous parasite that causes high mortality in cultured marine fishes. Small subunit ribosomal RNA (SSU rRNA) and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes were analyzed for 21 strains of M. avidus isolated from diseased olive flounder (Paralichthys olivaceus), ridged-eye flounder (Pleuronichthys cornutus), and spotted knifejaw (Oplegnathus fasciatus) in Korea and Japan (collected in 2003–2007). Analysis of SSU rRNA gene sequences (1,759 bp) indicates they are very conserved with less than 0.17% (3 nucleotides) differences suggesting that SSU rRNA are useful to identify M. avidus; however, the cox1 gene (900 bp) has higher variations with intraspecific divergences up to 5.67% (51 nucleotides). A distance tree of cox1 gene sequences based on a neighbor-joining analysis can separate 21 strains into five cox1 types (two heterogeneous clusters and three individual branches). The cox1-type matches with serotype of strains but do not reflect geographical origins, host species, or pathogenicity.

Keywords

Cox1 Gene Gene Sequence Divergence Determine Nucleotide Sequence Cox1 Gene Sequence Chinook Salmon Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-313-2007-2-F00076), and by the Natural Science and Engineering Research Council (NSERC) Discovery Grant to PTKW. The work of MSK was supported through funding to the Canadian Barcode of Life Network from Genome Canada, an NSERC Discovery Grant to D.H. Lynn and other sponsors (listed at http://www.BOLNET.ca).

References

  1. Barth D, Krenek S, Fokin SI, Berendonk TU (2006) Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. J Eukaryot Microbiol 53:20–25PubMedCrossRefGoogle Scholar
  2. Corliss JO (1953) Silver impregnation of ciliated protozoa by the Chatton–Lwoff technique. Stain Technol 28:97–100PubMedGoogle Scholar
  3. Chantangsi C, Lynn DH, Brandl MT, Cole JC, Hetrick N, Ikonomi P (2007) Barcoding ciliates: a comprehensive study of 75 isolates of the genus Tetrahymena. Int J Syst Evol Microbiol 57:2412–2425PubMedCrossRefGoogle Scholar
  4. Chantangsi C, Lynn DH (2008) Phylogenetic relationships within the genus Tetrahymena inferred from the cytochrome c oxidase subunit 1 and the small subunit ribosomal RNA genes. Mol Phylogenet Evol 49: 979–987Google Scholar
  5. Dunthorn M, Foissner W, Katz LA (2008) Molecular phylogenetic analysis of class Colpodea (phylum Ciliophora) using broad taxon sampling. Mol Phylogenet Evol 46:316–327PubMedCrossRefGoogle Scholar
  6. Dragesco A, Dragesco J, Coste F, Gasc C, Romestand B, Raymond J, Bouix G (1995) Philasterides dicentrarchi, n. sp. (Ciliophora, Scuticociliatida), a histophagous opportunistic parasite of Dicentarchus labrax (Linnaeus, 1758), a reared marine fish. Eur J Protistol 31:327–340Google Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  8. Foissner W (1991) Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. Eur J Protistol 27:313–330Google Scholar
  9. Gentekaki E, Lynn DH (2009) High-level genetic diversity but no population structure inferred from nuclear and mitochondrial markers of the peritrichous ciliate Carchesium polypinum in the Grand River Basin (North America). Appl Environ Microbiol 75:3187–3195PubMedCrossRefGoogle Scholar
  10. Goding JW (1993) Production of monoclonal antibodies. In: Goding JW (ed) Monoclonal antibodies: principles and practice. Academic, London, pp 175–176Google Scholar
  11. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identification through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321CrossRefGoogle Scholar
  12. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inferences. Q Rev Biol 66:411–446PubMedCrossRefGoogle Scholar
  13. Hirt RP, Dyal PL, Wilkinson M, Finlay BJ, Roberts DM, Embley TM (1995) Phylogenetic relationships among Karyorelictids and Heterotrichs inferred from small subunit rRNA sequences: resolution at the base of the ciliate tree. Mol Phylogenet Evol 4:77–87PubMedCrossRefGoogle Scholar
  14. Iglesias R, Paramá A, Alvarez MF, Leiro J, Fernández J, Sanmartin ML (2001) Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Dis Aquat Org 46:47–55PubMedCrossRefGoogle Scholar
  15. Jung SJ, Kitamura S-I, Song JY, Joung IY, Oh MJ (2005) Complete small subunit rRNA gene sequence of the scuticociliate Miamiensis avidus pathogenic to olive flounder Paralichthys olivaceus. Dis Aquat Org 64:159–162PubMedCrossRefGoogle Scholar
  16. Jung SJ, Kitamura S-I, Song JY, Oh MJ (2007) Miamiensis avidus (Ciliophora: Scuticociliatida) causes systemic infection of olive flounder Paralichthys olivaceus and is a senior synonym of Philasterides dicentrarchi. Dis Aquat Org 73:227–234PubMedCrossRefGoogle Scholar
  17. Kim SM, Cho JB, Lee EH, Kwon SR, Kim SK, Nam YK, Kim KH (2004a) Occurrence of scuticociliatosis in olive flounder Paralichthys olivaceus by Philasterides dicentrarchi (Ciliophora: Scuticociliatida). Dis Aquat Org 62:233–238PubMedCrossRefGoogle Scholar
  18. Kim SM, Cho JB, Lee EH, Kwon SR, Kim SK, Nam YK, Kim KH (2004b) Pseudocohnilembus persalinus (Ciliophora: Scuticociitida) is an additional species causing scuticociliatosis in olive flounder Paralichthys olivaceus. Dis Aquat Org 62:239–244PubMedCrossRefGoogle Scholar
  19. Kimura M (1980) A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  20. Lee EH, Kim KH (2008) Can the surface immobilization antigens of Philasterides dicentrarchi (Ciliophora: Scuticociliatida) be used as target antigens to develop vaccines in cultured fish? Fish Shellfish Immunol 24:142–146PubMedCrossRefGoogle Scholar
  21. Lynn DH (2008) The ciliated protozoa. Characterization, classification, and guide to the literature. 3rd Ed. Springer, DordrechtGoogle Scholar
  22. Lynn DH, Strüder-Kypke MC (2006) Species of Tetrahymena identical by small subunit rRNA gene sequences are discriminated by mitochondrial cytochrome c oxidase I gene sequences. J Eukaryot Microbiol 53:385–387PubMedCrossRefGoogle Scholar
  23. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499PubMedCrossRefGoogle Scholar
  24. Miao M, Song W, Clamp JC, Al-Rasheid KA, Al-Khedhairy AA, Al-Arifi S (2009) Further consideration of the phylogeny of some “traditional” heterotrichs (Protista, Ciliophora) of uncertain affinities, based on new sequences of the small subunit rRNA gene. J Eukaryot Microbiol 56:244–250PubMedCrossRefGoogle Scholar
  25. Munday BL, O’Donoghue PJ, Watts M, Rough K, Hawkesford T (1997) Fatal encephalitis due to the scuticociliate Uronema nigricans in sea-caged, southern bluefin tuna Thunnus maccoyii. Dis Aquat Org 30:17–25CrossRefGoogle Scholar
  26. Paramá A, Arranz JA, Alvarez MF, Sanmartín ML, Leiro J (2006) Ultrastructure and phylogeny of Philasterides dicentrarchi (Ciliophora, Scuticociliatia) from farmed turbot in NW Spain. Parasitology 132:555–564PubMedCrossRefGoogle Scholar
  27. Rossteuscher S, Wenker C, Jermann T, Wahli T, Oldenberg E, Schmidt-Posthaus H (2008) Severe scuticociliate (Philasterides dicentrarchi) infection in a population of sea dragons (Phycodurus eques and Phyllopteryx taeniolatus). Vet Pathol 45:546–550PubMedCrossRefGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  29. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc Lond B Biol Sci 360:1879–1888PubMedCrossRefGoogle Scholar
  30. Schlegel M, Elwood HJ, Sogin ML (1991) Molecular evolution in hypotrichous ciliates: sequence of the small subunit ribosomal RNA genes from Onychodromus quadricornutus and Oxytricha granulifera (Oxytrichidae, Hypotrichida, Ciliophora). J Mol Evol 32:64–69PubMedCrossRefGoogle Scholar
  31. Schmidt SL, Bernhard D, Schlegel M, Foissner W (2007a) Phylogeny of the Stichotrichia (Ciliophora; Spirotrichea) reconstructed with nuclear small subunit rRNA gene sequences: discrepancies and accordances with morphological data. J Eukaryot Microbiol 54:201–209PubMedCrossRefGoogle Scholar
  32. Schmidt SL, Foissner W, Schlegel M, Bernhard D (2007b) Molecular phylogeny of the Heterotrichea (Ciliophora, Postciliodesmatophora) based on small subunit rRNA gene sequences. J Eukaryot Microbiol 54:358–363PubMedCrossRefGoogle Scholar
  33. Snoeyenbos-West OLO, Salcedo T, McManus GB, Katz LA (2002) Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci. Int J Syst Evol Microbiol 52:1901–1913PubMedCrossRefGoogle Scholar
  34. Song JY, Kitamura S-I, Oh MJ, Kang HS, Lee JH, Tanaka SJ, Jung SJ (2009a) Pathogenicity of Miamiensis avidus (syn. Philasterides dicentrarchi), Pseudocohnilembus persalinus, Pseudocohnilembus hargisi and Uronema marinum (Ciliophora, Scuticociliatida). Dis Aquat Org 83:133–143PubMedCrossRefGoogle Scholar
  35. Song JY, Sasaki K, Okada T, Sakashita M, Kawakami H, Matsuoka S, Kang HS, Nakayama K, Jung SJ, Oh MJ, Kitamura S-I (2009b) Antigenic differences of the scuticociliate Miamiensis avidus from Japan. J Fish Dis 32:1027–1034PubMedCrossRefGoogle Scholar
  36. Song W (2000) Morphological and taxonomical studies on some marine scuticociliates from China sea, with description of two new species, Philasterides armatalis sp. n. and Cyclidium varibonneti sp. n. (Protozoa: Ciliophora: Scuticociliatida). Acta Protozool 39:295–322Google Scholar
  37. Song W, Wilbert N (2000) Redefinition and redescription of some marine scuticociliates from China, with report of a new species, Metanophrys sinensis nov. spec. (Ciliophora, Scuticociliatida). Zool Anz 239:45–74Google Scholar
  38. Song W, Wilbert N (2002) Reinvestigations of three “well-known” marine scuticociliates: Uronemella filificum (Kahl, 1931) nov. gen., nov. comb., Pseudocohnilembus hargisi Evans & Thompson, 1964 and Cyclidium citrullus Cohn 1865, with description of the new genus Uronemella (Protozoa, Ciliophora, Scuticociliatida). Zool Anz 241:317–331CrossRefGoogle Scholar
  39. Strüder-Kypke MC, Lynn DH (2010) Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Syst Biodivers 8:131–148CrossRefGoogle Scholar
  40. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  41. Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74CrossRefGoogle Scholar
  42. Thompson JC, Moewus L (1964) Miamiensis avidus n. g., n. sp., a marine facultative parasite in the ciliate order Hymenostomatida. J Protozool 11: 378–381Google Scholar
  43. Wang Y, Song W, Warren A, Al-Rasheid KA, Al-Quraishy SA, Al-Farraj SA, Hu X, Pan H (2009) Descriptions of two new marine scuticociliates, Pleuronema sinica n. sp. and P. wilberti n. sp. (Ciliophora: Scuticociliatida), from the Yellow Sea, China. Eur J Protistol 45:29–37PubMedCrossRefGoogle Scholar
  44. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857PubMedCrossRefGoogle Scholar
  45. Weisse T, Strüder-Kypke MC, Berger H, Foissner W (2008) Genetic, morphological, and ecological diversity of spatially separated clones of Meseres corlissi Petz and Foissner, 1992 (Ciliophora, Spirotrichea). J Eukaryot Microbiol 55:257–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sung-Ju Jung
    • 1
  • Eun-Young Im
    • 1
  • Michaela C. Strüder-Kypke
    • 2
  • Shin-Ichi Kitamura
    • 3
  • Patrick T. K. Woo
    • 2
    Email author
  1. 1.Department of Aqualife MedicineChonnam National UniversityChonnamSouth Korea
  2. 2.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  3. 3.Center for Marine Environmental Studies (CMES)Ehime UniversityMatsuyamaJapan

Personalised recommendations